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Abstract: Stratigraphic sequences in boreholes are commonly estimated by interpreting combinations of well
logs. The interpretation is generally tedious and is made some time after log completion, which often leads to a
loss of valuable first-hand information gathered on-site. This may lead to delayed or potentially poor on-site
decisions. To make things worse, the standard interpretation of well logs is, at least to a certain degree, subjec-
tive and based on the manipulation of data, which may be difficult to trace in the long term. Small changes in
lithology are often disregarded and alternating thin layers presenting different lithologies are often combined in
one single (notably thicker) stratigraphic unit. Therefore an automatic parameter-based and thus traceable and
objective quick look at the lithology immediately after log completion represents both a valuable tool to helpwith
on-site decisions and a solid, mathematically based starting point for further physically based interpretations
carried out by log analysts. We present a workflow for the interpretation of well logs defined as an optimization
problem. The workflow is applied to the characterization of metre- to decametre-scale stratigraphic units along
13 boreholes in northern Switzerland (one-dimensional resolution) and to millimetre-scale features over a wall
at the Mont Terri underground rock laboratory in Switzerland (two-dimensional resolution). The results show
that: (1) the workflow accurately maps lithological changes; (2) the interaction with the analyst is minimized,
which reduces the subjectivity of the interpretation; and (3) outputs are available for on-site decisions.

Geophysical well logs are one of the best sources
for identifying facies interfaces or characteristic
hydrogeological properties in boreholes (Dewan
1983; Crain 1986). Thus it is not strange that well
logging has become a standard in the oil, gas and
geothermal industries and in hydrogeology. Facies
mapping, the identification of formation fluids,
correlation between boreholes and evaluation of
the productive capabilities of reservoirs are the
main objectives of the interpretation of well logs
(Murray & Geldart 1991).

Facies mapping (in a broad sense, the estima-
tion of a lithostratigraphic sequence) is generally car-
ried out by the visual inspection of a composite of
well logs or suitable transformations of them (Crain
1986; Rider 1986). As such, standard interpreta-
tions are based on subjective criteria (e.g. filters or
thresholds), which may lead to different analysts rec-
ognizing different lithostratigraphic sequences. In
addition, the transformations required for such analy-
ses are difficult to trace in the long term. In addition
to subjectivity, the standard interpretation of well
logs presents two additional drawbacks. First, small
changes in lithology (e.g. in the clay content) are
often disregarded and alternating thin layers present-
ing slightly different lithologies are often combined

in one single, notably thicker, lithostratigraphic
unit. This is not a problem if the goal of the interpre-
tation is to capture large-scale trends. However,
small-scale features may be clearly observable in
geophysical well logs (the sampling interval of
which ranges from0.5 to 15 cmaccording to Schlum-
berger standards) and their accurate identification and
mapping may be crucial because they may be prefer-
ential flow paths for contaminant migration or water-
conducting features. Second, the interpretation is
generally made some time after log completion,
often leading to a loss of valuable first-hand informa-
tion gathered on-site (e.g. during drilling). Therefore
an automatic, parameter-based and hence objective
and traceable quick look at the lithology immediately
after log completion represents a valuable tool that
helps with on-site decisions (e.g. the depth of
hydraulic tests).

A lot has been achieved since the first resistivity
log was recorded in 1927 by Schlumberger (at
Pechelbronn field in Alsace, France; Clapp 1932):
(1) to enhance the logging accuracy to capture small-
scale features (although these are generally lost dur-
ing standard log interpretation); (2) to reduce the
subjectivity in the interpretation process; and (3) to
facilitate the interpretation by increasing its speed,
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making it beneficial for on-site decisions. The first
algorithm to automatically identify facies boundaries
is attributed to Lanning & Johnson (1983) and this
has been successfully applied numerous times (Ben-
Hamadou et al. 2005; Maiti & Tiwari 2005; Mokhtar
2007; Al-Garni 2008; Xiang et al. 2009; Javid &
Tokhmechi 2012; Ofuyah et al. 2014; Singh et al.
2016). The algorithm is based on a Walsh transform
of the recorded well logs. AWalsh transform is anal-
ogous to the Fourier transform with a constant win-
dow for analysing stationary signals (Pan et al.
2008). Window size is addressed by the short-time
Fourier transform (Allen 1977; Allen & Rabiner
1977). The main drawback is that only one window
(narrow for high-frequency data or wide for low-
frequency data) can be used at a time. The window-
ing problem can be tackled by wavelet transforms
that accommodate different windows for different
frequency bands (Nason & von Sachs 1999; Polikar
1999). The set of windows, and therefore the discrete
wavelet transform, is estimated by thresholding tech-
niques. Different thresholds can be applied (leading
to different results; Nason 1995), which does not
help to decrease the subjectivity of the interpretation.
In addition, wavelet transform methods are not easy
to implement and are not as intuitive as the original
method suggested by Lanning & Johnson (1983).

Regardless of the transformation applied to
enhance transitions in well logs (e.g. Walsh, short-
time Fourier or wavelet transform), the mapping of
lithological interfaces requires the definition of a
set of parameters that define the mapping accuracy
and a set of weights balancing the quality and quan-
tity of the information contained in each log. The
choice of such parameters has an impact on mapping
and is subjective, tedious (usually by trial and error)
and difficult to trace in the long term. This work is
aimed at filling these gaps.

We present a new workflow for the automatic
interpretation of well logs based on the Lanning
and Johnson algorithm that: (1) is parameter-based
and therefore traceable; (2) is fast, enabling on-site
decisions based on well logs and other sources of
information; (3) is accurate because it is based on
actual data and therefore can resolve small-scale fea-
tures if these are captured by the well logs; and (4)
accommodates the calibration of the intervening
parameters, substantially reducing the subjectivity
of the interpretation process. Calibration requires
some prior information of what is being modelled,
e.g. the depth of facies interfaces. Such information
may arise from two non-exclusive sources. It can
be provided directly on-site (e.g. by the driller
who perceives small fluctuations in the rate of pene-
tration or by the field geologist who monitors the
cuttings brought to the surface) and/or, if a posterior
analysis is made, information from core inspections/
sampling or; the interpretation made by a log analyst

may serve as calibration data. Both are valuable.
On-site information can be as accurate as the ana-
lyst’s interpretation and often yields valuable
information on the small-scale variability, which is
generally lost after standard interpretation of well
logs. Even if a first (subjective) interpretation has
been made, it is convenient to recall the original
datasets in an objective manner because important
small-scale features disregarded in the first analysis
may be revealed.

This paper is organized as follows. First, the
workflow is outlined and illustrated using well logs
in the borehole BDB-1 at the Mont Terri Under-
ground Rock Laboratory (Mont Terri URL, Switzer-
land). Second, the workflow is applied to mapping
large-scale lithostratigraphic units in 13 boreholes
in northern Switzerland and to the characterization
of two-dimensional millimetre- to centimetre small-
scale features at a wall in the Mont Terri URL. The
paper finisheswith some conclusions and recommen-
dations about the use of automatic tools for the objec-
tive, traceable and quick interpretation of well logs.

Workflow

The workflow consists of four main blocks (Fig. 1).
In block 1, automatic transformations of well logs
are carried out to make them comparable. In block
2, rock boundaries (in a broad sense, lithofacies
interfaces) are automatically detected. In block 3,
the statistics of the well logs or correlated variables
(e.g. shale volume, porosity or hydraulic conductiv-
ity) are calculated at each recognized lithostrati-
graphic unit. Note that blocks 2 and 3 are embedded
in the calibration loop. The last block of post-
processing allows the calculation of variograms,
which enables further geostatistical modelling – for
example, the correlation of logs at different bore-
holes. The different steps are illustrated in the follow-
ing sections of the paper by applying the workflow
and comparing the results with values taken from a
lithostratigraphic profile of borehole BDB-1 at the
Mont Terri URL (stratigraphic profile from Reisdorf
et al. 2014; geophysical data obtained from theMont
Terri Consortium).

Block 1: prior transformations

The workflow allows the consideration of several
well logs simultaneously. These are sometimes col-
lected with different logging tools and measurement
frequencies or sampling intervals (Fig. 2). In addi-
tion, the scales of the logs and even the physical
units may be different (e.g. density log may be pre-
sented in kg m−3, but the gamma logs in API
units), making them hardly comparable. To alleviate
this problem, the first step consists of introducing a
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Fig. 1. Sketch of the proposed workflow.

Fig. 2. (a, b) Natural and spectral gamma ray logs at borehole BDB-1 and (c, d) standardized logs. Only 5 m out of
c. 150 m are shown for ease of visualization. Part (d) shows the reconstructed (standardized) spectral gamma ray
signals using 1 and 304 Walsh functions. The maximum number of Walsh functions is limited by the discretization
(2048 in this instance). The discretization is 10 cm.
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common discretization and scale for all logs. Each
log is resampled at the points defined by the chosen
discretization (usually that of the log with best reso-
lution to avoid loss of information) bymeans of a lin-
ear interpolation scheme and is standardized to its
maximum value (therefore all in the range [0, 1]).
The discretization is a filtering parameter, which
needs to be calibrated.

Borehole quality also plays an important part in
the mapping because some logs (e.g. gamma ray
logs) are not representative near or at borehole break-
outs because the rock/formation volume under anal-
ysis is smaller than that in the absence of breakouts.
Such borehole singularities are easily detected by
observing the caliper log. Measured signals nega-
tively impacted by borehole quality are recon-
structed along these intervals by a multi-point
statistical algorithm (Strebelle 2002). The workflow
is generic and any other geostatistical sampler can be
applied. Alternatively, we could simply ignore the
interfaces mapped along the breakout intervals.
Each type of well log is also attributed with a certain
weight, which balances its reliability and weighs the
amount of information it contains. The sum of all
weights is equal to 1 and the individual weights are
model parameters to be calibrated.

Block 2: mapping interfaces

The mapping of interfaces is carried out by the algo-
rithm of Lanning & Johnson (1983). Enhancements
have been made to (1) speed up the calculations to
enable on-site decisions and (2) to accommodate
the calibration of the model parameters, reducing
the subjectivity in the mapping process. The algo-
rithm uses a set of Walsh functions to further discre-
tize the signals transformed in block 1 (usually fuzzy
and suffering from many small-scale fluctuations;
see Fig. 2a, c). Walsh functions (Walsh 1923) are
typically used in image rendering (Kennedy 1971
and references cited therein). They form an ordered
set of rectangular ortho-normal waveforms and are
described in detail in the original paper by Lanning
& Johnson (1983). Low-pass signal filtering (here,
a synonym to signal reconstruction) results in step-
wise segmented versions of the transformed signals
with enhanced, easy to visualize, transitions (solid
red lines in Fig. 2c, d). The segment width is con-
trolled by the number of Walsh functions and
the chosen discretization. A low number of Walsh
functions leads to an over-smoothed reconstruc-
tion of the signal (e.g. the first function represents
the mean value; Fig. 2d) where trend changes can-
not be identified. By contrast, a large number of
Walsh functions may lead to a spiky reconstructed
signal similar to the transformed signal, where iden-
tifying trends is difficult. The segment width is
directly related to the mapping accuracy through

the so-called minimum resolvable layer thickness
(Lanning & Johnson 1983) and rock units thinner
than this magnitude may not be resolved. The step
width also controls the CPU time required to map
interfaces. For all these reasons, the discretization
and number of Walsh functions are model parame-
ters to be calibrated.

Given a set of segmented signals with corre-
sponding weights, the mapping algorithm proceeds
as follows. Taking the first depth (in general, the
length along the borehole) as a fictitious interface,
the algorithm moves to the next segment along
each log and computes the difference between the
current standardized value and the mean on all pre-
vious segments since the last interface common to
all logs. These individual differences (one per log)
are then multiplied by the corresponding weight. If
a certain log was not recorded at that depth, or if
the measurement was corrupted, the corresponding
individual difference is simply ignored. The sum of
weighted differences yields the so-called pick value.
Large pick values denote large changes occurring at
all logs (on average if the weights are uniform). The
pick value is then compared with another model
parameter, the so-called check value. If the pick value
is greater than, or equal to, the check value, then the
current depth is picked as an interface and the algo-
rithm restarts from the current depth. The check
value is the most important model parameter because
it controls the amount the picked facies (i.e. high
check values lead to fewer picked interfaces). The
check value is also the most uncertain parameter
because it depends on the number and type of
intervening logs. Logs with few trend changes
require lower check values to identify a given num-
ber of interfaces. As such, the check value must be
calibrated. Figure 3 shows the sensitivity of the map-
ping algorithm to the check value by comparing the
interfaces picked using check values of w = 0.12 and
w = 0.16 with those identified by a standard interpre-
tation of the composite of logs and/or interface
depths from lithostratigraphic profiles, termed here
measurements. Two conclusions become apparent.
First, the algorithm identifies many interfaces when
the check value is low (a check value w = 0 would
lead to the picking of an interface at each segment
of the reconstructed logs). Second, the algorithm
identifies most measured interfaces with accuracy
(some of them within one-half of the segment
width). In fact, most interfaces picked by the map-
ping algorithm, but not recognized by the standard
interpretation, are clearly visible by closely examin-
ing the existing cores at the centimetre scale.

Calibration of model parameters

The choice of model parameters plays an important
part in the accuracy of themapping. The discretization
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and number of Walsh functions control the degree of
filtering (and correspondingly the amount of infor-
mation retained from the original logs). The weights
control the amount of information gathered from the
reconstructed logs. The check value controls the
amount and location of the picked interfaces. Pro-
vided that some measurements or benchmarks of
the interface depths are available, the problemoffind-
ing the optimum values of model parameters can be
defined as an inverse problem. The inverse problem
or, in broad terms, inverse modelling, refers to the
process of gathering information about the model
from measurements of what is being modelled (Car-
rera et al. 2005). Measurements come from two dif-
ferent non-exclusive sources: (1) on-site, from the
driller or the field geologist, and/or (2) from a poste-
rior standard interpretation of the well logs (or a com-
bination of both).

Model parameters can be calibrated manually or
automatically. Automatic calibration frees the mod-
eller of the burden of having to deal with a tedious
manual trial and error process of fine-tuning the
model parameters to achieve a best fit of the available
measurements. Automatic calibration can be carried
out by brute force (i.e. simply exploring different
combinations of parameters) or by gradient search
methods. In this work, the small number of model
parameters allowed us to explore the parameter
space. A mean square error function penalizing
large differences between the model outputs and

measurements is proposed:

f ( p) =
∑Nm

i=1

li(ci( p) − mi)2 + b|Nc − Nm| (1)

where Nm is the number of measurementsmi, ci( p) is
the automatically picked interface closest to mi,
which depends on the model parameters (e.g. the
check value or log weights) arranged in vector p
and λi are the weights characterizing the reliability
of individual measurements (all set to 1 in this
study). The vector p contains the discretization d,
the number of Walsh functions N, the check value w
and the vector of weights balancing the information
contained in each log. The second term in equation
(1) penalizes the picking of a large number of inter-
faces Nc, which would facilitate the calibration, and
is weighed by a ponderation factor β (set to 0 in this
analysis). As such, very small values of the check
value, leading to picked interfaces at almost each seg-
ment in the reconstructed signals, are also penalized.

A prior analysis revealed the low sensitivity of
the mapping algorithm to both the discretization
d and the number of Walsh functions N. The discre-
tization must be dense enough to take full profit
of the available log data. In the same line of argu-
ments, the number of Walsh functions defining the
segmented logs must be sufficiently high. In this
analysis, and for ease of visualization, we set the

Fig. 3. Interfaces mapped using both natural and spectral gamma ray logs. For comparison purposes, only the plots
of standardized natural gamma logs are presented. Circles depict the interfaces identified after standard interpretation,
termed here measurements (i.e. from lithostratigraphic profiles). Blue lines depict the low-pass filtered signals using
304 Walsh functions. Dashed red lines depict the automatically mapped interfaces using check values w = 0.12
(left-hand panel) and w = 0.16 (right-hand panel).
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discretization d to 25 cm (the measurement intervals
were 1 and 10 cm for natural and spectral gamma ray
logs, respectively) and the number of Walsh func-
tions N to 304 (15% of the maximum, 2048). Tests
made with d = 10 cm and N = 2048 (no segmenta-
tion of signals) did not lead to significantly different
results. Figure 4 shows the sensitivity of the mapping
algorithm to the check value and the weight of the
natural gamma ray log αN (the weight of the spec-
tral gamma ray log is obtained directly by difference,
1 − αN). The contour curves of the objective function
in equation (1) reveal a minimum using a check
value of 0.1 and weights of 0.24 and 0.76 for the nat-
ural and spectral gamma ray logs, respectively.

Figure 5 shows the interfaces mapped using these
parameters. A visual comparison between Figures
3 and 5 shows the importance of calibration. In Fig-
ure 5, all the interfaces from the stratigraphic profile
are detected by the algorithm with a mean error of
1.3 m (2.73 and 3.22 m for check values w = 0.12
and w = 0.16, respectively, in Fig. 3).

Block 3: including facies type and
hydrogeological properties in the calibration

The objective function in equation (1) can easily be
enriched with additional terms of the same kind to

Fig. 4. Contour curves of the objective function in equation (1) for different combinations of the check value and log
weights. The red dot depicts the absolute minimum.

Fig. 5. Picked interfaces using optimum parameters. Red circles represent values taken from lithostratigraphic profiles.
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account for other types of measurements or prior
information about the model parameters. In this
study, only depths of interfaces have been used.
However, the workflow is generic and can accom-
modate other measurements, e.g. facies types
(accounting for mineralogical contents), shale vol-
ume, porosity measurements or hydraulic conductiv-
ity values arising from laboratory experiments,
separate interpretations of hydraulic tests or prior

knowledge. Facies type can be detected automati-
cally if the thorium and potassium contents defining
the spectral gamma ray counts are provided (Fig. 6a).
The calculation of shale volumeVshl involves a trans-
formation of the spectral gamma ray log:

Vshl = SGR− SGRcln

SGRshl − SGRcln
(2)

Fig. 6. (a) Thorium–potassium cross-plot (Schlumberger Ltd 1991). Dots correspond to the mean thorium to
potassium ratio of the facies in Figure 5. The colour coding refers to the mean facies depth. (b) Vertical distribution
of shale volume along borehole BDB-1. (c, d) Variograms of shale volume in facies 5 and 7. Dots depict the
experimental variogram. The number of pairs for each lag distance is also indicated. Variogram type and parameters
(range a and sill c) are given in the labels.
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where SGR, SGRcln and SGRshl are the spectral
gamma ray values measured in the borehole, in a
clean sand and in a shale zone, respectively. SGRcln

and SGRshl are also model parameters to be cali-
brated, although a first estimate can be obtained
from the cross-plot of the solid density and spectral
gamma ray. Figure 6b shows the distribution of the
clay content in the BDB-1 borehole attained with
SGRcln = 10 API and SGRshl = 90 API (not obtained
from actual well logs). In addition, the porosity can
be calculated from certain well logs (e.g. density or
combinable magnetic resonance) via empirical rela-
tionships and additional model parameters. In a sec-
ond step, the hydraulic conductivity can be inferred
from porosity through, e.g. the Kozeny–Carman
law (Kozeny 1927). These distributions can then
be related to prior knowledge and/or actual labora-
tory or field measurements to further constrain the
model parameters. Secondary information on the
facies type, mineralogy or the relevant hydrogeolog-
ical properties enriches the accuracy of the mapping
and enhances the characterization of the stratigraphic
sequence. Unfortunately, considering such measure-
ments involves the calibration of additional parame-
ters, making the brute search calibration process
slower (although still feasible). In such a case, gradi-
ent search methods (e.g. the regularized pilot points
method; Alcolea et al. 2006) should be used. How-
ever, this is beyond the scope of this paper. Instead,
we focus on the parameters defining the accuracy of
interface mapping.

Block 4: geostatistical post-processing

Once the distributions of the shale volume, porosity
and hydraulic conductivity have been estimated, var-
iograms describing the variability of such properties
can be inferred, which allow us to establish the cor-
relations between different boreholes and enables
geostatistical modelling (Fig. 6c, d). Variograms
are obtained automatically by means of jack-knife
techniques (Quenouille 1949).

The workflow can also be used to address uncer-
tainties in the estimated parameters. These arise from
the propagation of the inherent uncertainties of well
logs (e.g. caused by environmental effects, mud den-
sity or other statistical effects related to natural
decay) or of the empirical functions used in the trans-
formations. To that end, the workflow can be cast in
the framework of Monte Carlo statistical analysis
(Yang & Torres-Verdín 2015).

Applications

This section presents two applications involving dif-
ferent scales and dimensionalities. The first applica-
tion consists of the one-dimensional mapping of

lithostratigraphic units at the metre to decametre
scale in 13 boreholes in northern Switzerland. The
second application consists of the characterization of
the heterogeneity of a small rock surface at a wall
in the so-called TT niche of the Mont Terri URL.
Thus the analysis is two-dimensional (although
made as a composite of one-dimensional interpreta-
tions) and at the millimetre to centimetre scale. The
objective is two-fold. First, we show that the work-
flow is capable of mapping facies with accuracy
regardless of the scale. Second, we test the sensitiv-
ity of the mapping algorithm to its main parameter,
i.e. the check value.

Mapping of large-scale stratigraphic units

The location of the 13 boreholes under study, with
depths varying in the range 150–2500 m, is shown
in Figure 7. Several logs were collected at each bore-
hole and the composite was interpreted to compare
the geostatistical results with the interfaces obtained
from lithostratigraphic profiles (lithostratigraphic
profile from Lindau 1 published in Büchi et al.
1965; from Lausen in Vogt et al. 2016; from Benken
in Nagra 2001; all other values were taken from
stratigraphic profiles in Nagra 2014; all geophysical
data was obtained from Nagra archives). Interfaces
from stratigraphic profiles are used here as measure-
ments to calibrate the check value. For simplicity,
one single representative log has been chosen at
each borehole. The mapping of interfaces is carried
out twice. First, a common check value of w = 0.16
is set (i.e. calibration is not performed). This high
value has been purposefully chosen to illustrate the
impact of a wrong choice of the check value.

Table 1 shows the calibrated values and mean
mapping errors, defined as the absolute differences
between the measured interfaces and the closest cal-
culated interface depth. The table also reports the
number of interpreted interfaces not detected by the
mapping algorithm. To that end, a small threshold
error of 1 m was considered. The first conclusion
that becomes apparent is the negative impact of a
wrong choice of the check value on both the map-
ping accuracy and the number of missed interfaces.
If a wrong (in the sense of not calibrated) check
value of w = 0.16 is used, then the algorithm misses
36% of the total interfaces to be mapped (344 overall
in all 13 boreholes). Correspondingly, the mean
mapping errors are high. These values decrease dra-
matically by calibrating the check value (2% of
missed interfaces and small individual mapping
errors). In this instance, the mean error (all bore-
holes) is 0.6 m only. This is especially relevant bear-
ing in mind how the measurements are obtained (i.e.
by visual and subjective inspection of a composite of
logs) and because only one representative log was
used in the calibration. The strong variability of the
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calibrated check values in the range 0.02–0.15 is
explained by local heterogeneities and by the differ-
ent accuracies of the logs used in the calibration.

Figure 8 shows a comparison between the gamma
ray measurements of acoustic borehole image (ABI)
logs in boreholes Hemmental-2 and Tegerfelden-2,
along with the segmented signals and mapped/
measured interfaces. The ABI log measured in
Hemmental-2 shows many more small frequency

fluctuations than that in Tegerfelden-2. These fluctu-
ations are alleviated, but do not completely disappear,
after segmenting the signal (304 Walsh functions
were used in all instances). Because the algorithm
aims to pick an interface close to the measured inter-
faces, it requires a lower check value when the
amount of fluctuations in the segmented signal is
small. Figure 9 shows a box-plot of mapping errors
for all boreholes. The mean mapping error is <1 m

Table 1. Summary of the mapping of interfaces

Borehole Δz
(m)

Well log <th>
(m)

#
int

Reference w = 0.16 Optimum after calibration

Mean
error (m)

#
missed

w Mean
error (m)

#
missed

Benken 1000 GR_FMI 6.8 146 2.58 6 0.05 0.54 0
Schlattingen 1507 GR_ABI 46.3 23 111.00 22 0.05 0.66 1
Löhningen 170 GR_ABI 17.3 3 0.56 0 0.10 0.23 0
Hemmental-2 305 GR_ABI 25.1 11 0.45 0 0.15 0.43 0
Weiach 2470 SGR 34.1 23 9.72 14 0.05 0.79 0
Lindau 1 2380 GR 236.0 9 3.98 4 0.02 0.72 0
Tegerfelden-2 231 GR_ABI 11.4 12 0.59 0 0.04 0.56 0
Riniken 1608 SGR 19.3 31 93.11 30 0.02 0.71 1
Schafisheim 1995 SGR 55.8 21 104.90 20 0.02 1.15 3
Wölflinswil-2 287 GR_ BHTV 21.6 12 3.18 5 0.05 0.72 0
Gösgen SB2 345 GR_ABI 38.6 16 0.21 0 0.15 0.21 0
Lausen 145 GR_ABI 6.1 23 4.54 11 0.05 0.16 0
Pffafnau-1 1825 GR 103.2 14 118.30 11 0.02 0.85 2

Total 344 123 7

Columns refer to: depth Δz and well log used in the analysis (standard notation in Crain 1986); <th> denotes the mean facies thickness; #int is
the number of facies interfaces to be mapped after the standard interpretation of the available logs (i.e. the number of measurements); the
mean error is the mean absolute difference between the measured interfaces and closest calculated interfaces; #missed denotes the number of
interpreted facies not detected by the picking algorithm. The three right-hand columns summarize the results after calibration of the indi-
vidual check values w.

Fig. 7. Location of the 13 boreholes.
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in all instances, except in Schafisheim (1.15 m).
These errors are very small compared with the
mean facies thickness (Table 1).

Mapping of small-scale features

A hand-held spectrometer monitored the spectral
gamma emission along 14 horizontal scanlines
over a c. 75 × 15 cm2 surface at a rock wall in the
TT niche of the Mont Terri URL (Fig. 10). Several

structures (darker colours, dipping 45°) oriented par-
allel to the bedding planes can easily be identified.
A closer look at these structures (Fig. 11) shows
both their elongated shape (thickness <10 mm in
most instances) and a marked intra-facies variability,
defined by interbedded microstructures mixing
different mineralogies. The manual lifting of the
spectrometer using a forklift made it difficult to prop-
erly georeference the horizontal scanlines with
respect to the photographs in Figures 10 and 11,

Fig. 8. Standardized original and reconstructed gamma ray measurements from ABI logs in boreholes Hemmental-2
and Tegerfelden-2. Only 50 m are displayed. Interfaces taken from lithostratigraphic profiles are represented by
circles and the dashed red lines represent the automatically mapped interfaces.

Fig. 9. Box-plot of mapping errors for all boreholes after calibration. The outliers representing the large mapping
errors corresponding to unidentified interfaces are not reported for ease of visualization. Abbreviations in x-axis
correspond to boreholes in Table 1: Benken, BEN; Schlattingen, SCHL; Loehningen, LÖH; Hemmental-2, HEM;
Weiach, WEI; Lindau 1, LIN; Tegerfelden-2, TEG; Riniken, RIN; Schafisheim, SCHA; Woelflinswil-2, WÖL;
Gösgen SB2, GÖS; Lausen, LAU; Pfaffnau-1, PFF.
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making it impossible to calibrate the model parame-
ters with the image. Instead, a blind prediction of the
shape and distribution of the structures is inferred
from spectral gamma ray readings.

First, the mapping algorithm is separately applied
to each scanline. After a first sensitivity analysis, we

use a check value w = 0.02, a discretization d = 1 cm
corresponding to the horizontal and vertical mea-
surement frequency, and N = 127 Walsh functions
to segment the spectral gamma logs. Overall, 247
interfaces are mapped. For each identified facies,
the mean thorium to potassium ratio is calculated
and categorized (Fig. 12). This variable is considered
as a good indicator of the facies type. Visual inspec-
tion of Figure 12 shows certain structures dip-
ping at 45°. However, the small thickness of the
measured features cannot be captured by the map-
ping algorithm because the discretization is coarse
and the spectrometer averages the gamma read-
ings across the scintillator crystal (i.e. a surface of
7.5 × 7.5 cm2).

In an attempt to reduce the impact of the measure-
ment frequency (1 × 1 cm2), the five thorium to
potassium ratio categories in Figure 12 are used as
conditioning measurements to estimate the distribu-
tion of facies. Variograms are first estimated in the
directions of 0, 45 and 90° (Fig. 13). In view of the
preferential alignment of structures parallel to bed-
ding planes dipping at 45°, it is not strange that the
best variogram fit is attained along that direction.

Fig. 10. Rough area of the monitored surface at a rock
wall in the TT niche. A zoomed image at areas A and B
is presented in Figure 11.

Fig. 11. Zoomed image of selected areas A and B shown in Figure 10. The rings in panel A are the footprints of the
drilling device.

Fig. 12. Mapped facies along 14 horizontal scanlines. Colour coding corresponds to the mean thorium to potassium
ratio within each facies.
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In fact, experimental variograms along horizontal
and vertical directions are fuzzy and characteristic
of the variability of a non-stationary variable (Sam-
per & Carrera 1996). The best-fitting model vario-
gram is spherical, with a nugget 0.05 and a sill
0.85. The non-zero nugget confirms the presence
of scales of variability smaller than the distance
between measurements (10 mm). Such scales are
easily observable in Figure 11. The longitudinal
range and the variogram bandwidth are 90 and
10 mm, respectively, coherent with the mean length
and thickness of some structures. The domain is now

discretized using a regular grid with a step size of
1 mm and kriging of the mapped categories in Fig-
ure 12 is carried out using the model variogram in
Figure 13. The results, in terms of the estimated cat-
egories and corresponding kriging variances, are
shown in Figure 14. As observed, the structures are
correctly aligned with the bedding planes. Obvi-
ously, this is a byproduct of the use of the 45° ori-
ented variogram. The identified structures resemble
the shape of those in Figures 10 and 11. Unfortu-
nately, the identified structures cannot be unambigu-
ously correlated with those in the photographs

Fig. 13. Experimental variograms (symbols) in directions 0°, 45° and 90°. The lower panel shows the model
variogram used in the kriging estimation.

Fig. 14. (a) Thorium to potassium ratio categories estimated by the kriging of measurements in Figure 12.
(b) Kriging estimation variances.
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due to the lack of a common georeference sys-
tem. However, global trends in the alignments are
clearly visible in the estimated field. This shows
that the workflow is capable of identifying small-
scale features if these are properly captured by the
measured logs.

Conclusions

A workflow for the automatic interpretation of well
logs (or, in more general terms, measurements with
one correlating variable) has been presented. It inte-
grates a mapping algorithm, inspired by that of Lan-
ning & Johnson (1983), and empirical functions to
identify lithostratigraphic units and derive hydrogeo-
logical properties, enhancing the standard interpreta-
tion of stratigraphic sequences in boreholes. Efforts
have been devoted to: (1) the calibration of model
parameters, making the interpretation of well logs
objective and traceable; (2) to the algorithmic effi-
ciency, facilitating on-site decisions based on actual
data; and (3) to the inclusion of geostatistical tools
for post-processing, enabling further modelling exer-
cises, e.g. correlations between boreholes.

The calibration exercises presented here are illus-
trative and simple and focus on the check value,
which controls the accuracy of the mapping, and
on the weights balancing the amount of information
contained in each well log. However, the workflow is
generic and allows us to estimate the remaining
parameters (optimum discretization and number of
Walsh functions used in signal enhancement, and
possibly others governing empirical functions for
log transformation). In the same line of argument,
we have only used the depth of facies interfaces
obtained by a standard interpretation of the compos-
ite of logs as measurements. Interfaces detected dur-
ing drilling and/or interpretations of laboratory or
hydraulic tests (e.g. shale volume, facies type, poros-
ity and/or hydraulic conductivity) can also be used
as measurements to further constrain the model
parameters and enrich the description of the strati-
graphic sequence.

The suggested workflow was applied to two
different problems involving different scales and
dimensionalities. The results of the first application
show the importance of calibration. Optimum model
parameters lead to small mapping errors and there-
fore to more accurate descriptions of the large-scale
stratigraphic sequence in 13 boreholes in northern
Switzerland. After calibration, the workflow identi-
fies with accuracy 98% of the large-scale facies inter-
faces present in the 13 boreholes (only 7 missed out
of 344measured interfaces; Table 1). Instead, it iden-
tifies only 64%with wrong parameters (123 missed).
The versatility of the workflow to resolve different
scales is addressed by the second application. The

workflow was used to map facies along horizontal
scanlines over a small surface containing small-scale
structures with thicknesses <1 cm. The absence of a
georeference system precluded the calibration of the
model parameters, impeding the resolution of thin
structures. The discretization issue was addressed
by estimating a kriged field from the facies type iden-
tified by the workflow. Although the reconstructed
field could not be directly compared with on-site
observations, the alignments and shapes of the iden-
tified structures resemble those observed in the field.

Much remains to be done. The model parameters
are calibrated by exploring the parameter space (i.e.
the brute force testing of combinations of model
parameters), which has a negative impact on CPU
time. This issue can be tackled by using gradient
search methods. The impact of other type of logs
or measurements (e.g. facies type or shale volume)
must be further explored to validate the use of empir-
ical functions in the workflow. Uncertainties in well
logs (e.g. those caused by environmental effects,
mud density or statistical uncertainties due to natural
decay) can be taken into account by casting the
workflow in a Monte Carlo simulation framework.
The results presented here should be viewed as a
hopeful step in the direction of automatically and
efficiently interpreting geophysical well logs.
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