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Abstract

Many flow and transport phenomena, ranging from delayed storage observed in pump-
ing tests to tailing in river or aquifer tracer breakthrough curves, display non-equilibrium
behavior. Usually, they are modeled by non-local in time formulations, such as multi-
porosity, multiple processes non equilibrium, continuous time random walk, memory5

functions, integro-differential equations, fractional derivatives or multi-rate mass trans-
fer (MRMT), among others. We develop a MRMT algorithm that can be used to repre-
sent all these formulations. The method is accurate, computationally inexpensive and
easy to implement in groundwater or river flow and transport codes. In fact, we present
a module that can be linked to existing programs with minimal programming effort. Its10

accuracy is verified by comparison with existing solutions.

1 Introduction

Solving flow and solute transport phenomena in natural media requires using variables,
such as heads and concentrations, that characterize the state of the system at every
point. Therefore, they are termed state variables. State variables are assumed repre-15

sentative of a small portion of water around such point. This implies that the traditional
flow and transport equations implicitly assume local equilibrium.

Even though local equilibrium is assumed by default, non-equilibrium behavior is fre-
quently observed in water flow and solute transport through water bodies. Numerous
causes may explain non-equilibrium. In water flow through permeable media, it has20

been attributed to delayed storage mobilization, either because of resistance at the
aquifer free surface (Boulton, 1955; Neuman and Witherspoon, 1971; Neuman and
Tartakovsky, 2008), or because of resistance at low permeability blocks (Warren and
Root, 1963). It has also been attributed to heterogeneity (Cortis and Knudby, 2006).
In solute transport, it has been attributed to diffusion-limited storage into immobile re-25

gions, kinetic sorption or heterogeneity (Brusseau et al., 1989; Valocchi, 1990; Sardin
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et al., 1991; Cvetkovic et al., 1992; Toride et al., 1993; Haggerty and Gorelick, 1995;
Ray et al., 1997; Carrera et al., 1998; Salamon et al., 2006; Vogel et al., 2006; Zhang
et al., 2006; Zhang et al., 2007; Alcolea et al., 2008; Willmann et al., 2008; Kumar,
2008; Gouze et al., 2008). Non-equilibrium also has been observed in solute trans-
port through rivers that are influenced by the exchange of water between the river and5

the underlying hyporheic zone (Fernald et al., 2001; Boano et al., 2007; Marion et al.,
2008) or by aggregated dead-zones (Beer and Young, 1983; Lees et al., 1998, 2000;
Davis et al., 2000).

Non-equilibrium is typically modeled by non-local in time formulations. Non-local in
time means that the mobilization of storage does not depend solely on heads (or con-10

centration) at the current time, but also on their past history. In practice, this implies
that a sink-source term on the past history (e.g. Carrera et al., 1998) or that an addi-
tional storage term (e.g. Haggerty and Gorelick, 1995) are added to the mass balance
equations. It is the form of such terms what sets different non-local formulations apart.
The number of non-local formulations is too long to list. The most widely used have15

been:

– Multi-rate mass transfer (MRMT) (Haggerty and Gorelick, 1995).

– Fractional derivatives (Barker, 1988; Acuna and Yortsos, 1995; Schumer et al.,
2003).

– Continuous time random walk (CTRW) (Berkowitz and Scher, 1998; Dentz and20

Berkowitz, 2003; Benson and Meerschaert, 2009).

– Memory functions (Carrera et al., 1998; Haggerty et al., 2000; Gouze et al., 2008).

Among these, the MRMT formulation is appealing, first, because it is easy to under-
stand. In MRMT formulations, the domain is assumed to consist of a mobile contin-
uum and several overlapping immobile continua. These exchange mass linearly with25

the mobile region. In this way, the state of immobile zones can be characterized by
heads (or concentrations). That is, the traditional single state variable can be viewed
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as substituted by a continuum of state variables. Effectively, these work as local state
variables, representing a local equilibrium in each of the immobile regions.

A second virtue of MRMT approaches is that they have been proven to be equiva-
lent to other non-local formulations. Haggerty et al. (2000) showed that the MRMT is
equivalent to the memory functions approach of Carrera et al. (1998). The latter is also5

equivalent to the non-local in time version of CTRW (Dentz and Berkowitz, 2003), which
can also represent non-local in space terms. The same can be said about fractional
derivatives (Berkowitz et al., 2002).

Arguably, the most widely extended form of MRMT is that of Haggerty and Gorelick
(1995). They developed the model to account for small-scale variation in rates and10

types of mass transfer by using a sequence of first-order exchange terms to represent
mass transfer with an equal number of immobile zones. Their work and other similar
studies have revealed that multiple-porosity models can also be used to solve more
general mass-transfer problems and their combinations. For instance, Valocchi (1985)
studied the conditions for which local equilibrium is a valid assumption for modeling15

the transport of sorbing solutes in homogeneous soils. Gerke and van Genuchten
(1993a, b) presented a dual-porosity model to simulate transient water flow and solute
transport in unsaturated fractured rock formations and structured soils. Sánchez-Vila
and Carrera (2004) analyzed the moments of the breakthrough curves in tracer tests
and concluded that macrodispersion can be represented by means of mass transfer20

terms. Wang et al. (2005) developed a direct integration method to solve dual-domain
multi-rate mass transfer coupled with advective-dispersive transport. Through their ap-
proach they extended the MRMT formulation of Haggerty et al. (2000) to more general,
transient flow fields. El-Zein et al. (2005) developed a numerical method to solve mass-
transfer problems in intact soils, soils with non-equilibrium sorption and immobile so-25

lutions, fissured clayey soils, and structured topsoils, in addition to their combinations.
Zhou et al. (2006) proposed a conceptual model of multi-process matrix diffusion in
a single fracture consisting in a sequence of three mechanisms: diffusion into stagnant
water and infilling materials in fractures, diffusion into a degraded matrix zone adjacent
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to fractures, and further diffusion into an intact matrix zone away from fractures. They
validated their model with a field tracer test. In the same way, Liu et al. (2007) showed
that the dual-domain mass transfer model can reproduce both the near-source peak
and the downstream low-concentration spreading when small-scale high-conductivity
preferential flow paths are present in a homogeneous porous matrix.5

The problem with MRMT approaches, and with most non-local formulations for that
matter, is that they are usually implemented to solve a particular numerical application.
They are typically solved through Laplace transformation, which facilitates overcoming
the nuisances of fractional derivatives or non-locality. These formulations are numeri-
cally efficient, but hard to translate to non-linear phenomena, such as multicomponent10

reactive transport. As a result, these formulations have been typically linked to specific
codes, which hinders their general use. Thus, the objective of the present work is to
propose an easy numerical implementation of multi-rate mass transfer that is equiva-
lent to other existing formulations, and that also is able to describe other phenomena
distinct from solute transport. The present approach is implemented in a Fortran 9015

module that can be quite easily embedded into any existing numerical code for flow
and solute transport.

2 Governing equations

Non-local in time formulations can be used to enrich the behavior of either the flow or
transport equations, or both. In either case, they can be viewed in two complementary20

fashions: (i) as a continuum of delayed storage terms, in which case these equations
represent the total mass balance in both mobile and immobile regions, or (ii) as a con-
tinuum of sink/source terms, which act as linear mass exchange terms between mobile
and immobile zones. In practice, the continuum is substituted by a discrete number of
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terms. Therefore, using the first view, the flow equation becomes

Sm
∂hm
∂t

+
N∑
j=1

Sim,j
∂him,j
∂t

= −∇ · q + q (1)

where t (T) is time, hm (L) is head in the mobile zone, Sm (L−1) is the spe-
cific storage coefficient, q (L/T) is water flux and q (T−1) represents a sink/source
(recharge/extraction). him,j (L) and Sim,j (L−1) are head and specific storage coeffi-5

cients of the j th immobile zone, respectively. Water storage in each immobile region is
fed by a linear exchange with the mobile domain

Sim,j
∂him,j
∂t

= σim,j
Kim,j
Lim,j

(
hm − him,j

)
(2)

where σim,j (L2/L3) is the specific surface of the j th immobile region, Lim,j (L) its
distance from the mobile zone and Kim,j (L/T) its hydraulic conductivity.10

Analogously, the solute transport equation expresses the solute mass balance per
unit volume of aquifer

φmRm
∂cm
∂t

+
N∑
j=1

φim,jRim,j
∂cim,j
∂t

= ∇ · (Dm · ∇cm) − q · ∇cm (3)

where cm (M/L3) is the mobile concentration, Dm (L2/T) is the hydrodynamic disper-
sion tensor,φm (L3/L3) is the mobile porosity (volume of pores per unit aquifer volume),15

and Rm (–) is the mobile zone retardation factor. Similarly, cim,j (M/L3), φim,j (L3/L3)
and Rim,j (–) are the concentration, porosity and retardation factor of the j th immobile
zone. As in flow phenomena, mass balance in the j th immobile region is given by

Rim,jφim,j
∂cim,j
∂t

= σim,j
φ′
im,jDim,j
Lim,j

(
cm − cim,j

)
(4)
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where φ′
im,j (L3/L3) is its porosity (volume of pores per unit volume of immobile re-

gion), Dim,j (L2/T) is a molecular diffusion coefficient in the j th immobile region. Equa-
tion (4) can be somewhat simplified by writing φ′

im,j as a function of φim,j (see e.g.,
Carrera et al., 1998). However, we must bear in mind that the physical meaning of the
other parameters in Eqs. (2) and (4) is somewhat approximative. Bearing this in mind,5

Eqs. (1)–(4) can be written in general as

β
∂um
∂t

+
N∑
j=1

βj
∂uim,j
∂t

= Lu (um) (5)

∂uim,j
∂t

= αj
(
um − uim,j

)
j = 1 . . . N (6)

where u=h, for flow or u=c, for solute transport. The βj (dimensionless) coefficients10

are called capacity coefficients (Rim,jφim,j for transport or Sim,j for flow) to account
for the distribution of mass in the immobile phases; β (dimensionless) is the capacity
coefficient of the mobile phase (Rmφm for transport or Sm for flow); and αj (T−1) is
a first-order mass transfer rate coefficient. The right-hand side of Eqs. (1) and (3) is
designated generically by the operator Lu.15

Denoting Fj the j th term of the sum in Eq. (5), the governing equations for the im-
mobile zones are given as

Fj = βj
∂uim,j
∂t

= βjαj (um − uim,j ) j = 1 . . . N (7a)

F =
N∑
j=1

Fj (7b)20
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3 General formulation for MRMT

Spatial and time discretization of either the flow or transport equations under local
equilibrium assumptions (i.e., without MRMT) leads to a linear system of equations
(e.g., Medina and Carrera, 1996)

D
∆um
∆t

+ Auk+θm = bk+θ (8)5

where ∆um=u
k+1
m −ukm, ∆t=tk+1−tk is the time step, θ is a weighting factor and the

superscripts stand for the time in which the variable is evaluated.
Accounting for MRMT can be achieved in two ways: (a) using an appropriate mesh

with nodes representing the immobile zones (e.g., Neuman, 1982), or (b) by eliminating
the unknown in the immobile region as an explicit state variable, i.e. expressing uim,j as10

a function of um (e.g., Carrera et al., 1998). Here, we have adopted the later approach
because: first, it maintains the number of unknowns unchanged and, second, it is
actually simpler to implement into existing generic flow and transport simulation codes.

Figure 1 displays a schematic representation of a hypothetical numerical mesh that
includes both the mobile and immobile domains. We assume that each node m of the15

mobile zone is connected to all adjacent nodes of the mesh and to all the immobile
blocks. Node im, j of the immobile region is only connected to node m. Geometrically,
node im, j overlaps with nodem. We show below that the variable u at node im, j (i.e.,
uim,j ) can be solved explicitly as a function of um. Therefore, node im, j need not be
an “uncertain” node, but can be considered as a zero-D node.20

We first solve the N first-order ordinary differential Eq. (6) in terms of ∆um,
while assuming that um varies linearly during each time increment. That is,
um=u

k
m+(∆um/∆t)(t−t

k). This leads to N first-order linear differential equations,
whose solution is

uim,j (t) = ukim,je
−αj (t−t

k )+ukm
(

1 − e−αj (t−t
k )
)
+
∆um
∆t

[
(t − tk) − 1

αj

(
1 − e−αj (t−t

k )
)]

(9)25
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Combining Eqs. (6), (7a) and (9), the flux Fj evaluated at time tk+θ will be

F k+θj = βjαj
(
uk+θm − uk+θim,j

)
= βjαj

(
ukm − ukim,j

)
e−αjθ∆t +

∆um
∆t

βj
(

1 − e−αjθ∆t
)

(10)

Notice that this flux is only a function of u at the previous time step and ∆um. The total
mass flux, F k+θ, is given by Eq. (7b). Substituting the resulting expression into Eq. (8)5

leads to an identical system, except that the storage matrix and sink/source term are
modified according to

(D∗)i i = (D)i i + vi

N∑
j=1

βj
(

1 − e−αjθ∆t
)

(11a)

(b∗)k+θi = (b)k+θi − vi
N∑
j=1

βjαj
[
ukm,i −

(
ukim,j

)
i

]
e−αjθ∆t (11b)10

where ukm,i is the value of u at node i of the mobile region and time tk , and
(
ukim,j

)
i

the corresponding value in the j th immobile block, and vi is the volume of cell i in
volume integrated formulations (e.g., finite element) and is equal to 1 in discretized
formulations (e.g., finite differences). Finally, it is necessary to update uim,j at the
end of each time step using Eq. (9). This approach is quite simple to program and15

should lead to accurate solutions at a very low computational cost. As with the integro-
differential approach, the number of nodes/elements is not altered by the addition of
the MRMT terms.
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4 Equivalence with other similar approaches

As mentioned in the introduction, a large number of non-local in time schemes have
been presented by different authors (Beer and Young, 1983; Sudicky, 1989; Haggerty
and Gorelick, 1995; Carrera et al., 1998; Lees et al., 2000; Fernald et al., 2001; Dentz
and Berkowitz, 2003; Schumer et al., 2003; Boano et al., 2007; Marion et al., 2008).5

This section is devoted to discussing such equivalence so as to facilitate using them
in the proposed formulation. Haggerty et al. (2000) provided a comparison table with
different MRMT formulations considering governing equations similar to Eqs. (5) and
(6). The present approach is essentially identical to that of Haggerty and Gorelick
(1995). The main difference is that they formulated their equations per unit volume of10

water. Therefore, their capacity coefficients are equal to the coefficients βj of Eqs. (5)
and (6), but divided by the mobile capacity, β. Denoting βjHG and αjHG the capacity
and first-order mass transfer coefficients considered by Haggerty and Gorelick (1995),
we have the following equivalence relationship

βjHG = βj/β (12a)15

αjHG = αj (12b)

We have preferred to use capacity coefficients as defined in Eq. (5) to keep the phys-
ical meaning and consistence of the governing equations as mass balances per unit
volume of aquifer.20

Many schemes approximate the effect of the immobile region by a continuous mem-
ory function. The governing equations are then solved in the Laplace domain. These
solutions can be approximated by expanding the memory function as a sum of expo-
nentials (Carrera et al., 1998). Each summand can then be solved as explained in
Sect. 3. For the purposes of comparison with our approach, the important issue is to25

acknowledge that such approaches are typically defined in terms of overall parameters
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for the whole immobile region (as opposed to independent αj and βj ). For the works
of Carrera et al. (1998) and Salamon et al. (2006), the equivalence is given by:

αj = γ
2
j

Dim
RimL

2
im

(13a)

βj =
aj

γ2
j

Rimφim (13b)5

where φim (L3/L3), Rim, Dim (L2/T) and Lim (L) are characteristic parameters of the
entire immobile domain. Coefficients aj and γj can be found in the literature (e.g.,
Haggerty and Gorelick, 1995; Carrera et al., 1998; Haggerty et al., 2000; Salamon
et al., 2006) for diffusion into different geometries (layered, cylindrical, spherical and
veins) and the standard first-order model. These formulations result from the analytical10

solution of the diffusion equation. The coefficients in Eqs. (13) result from an infinite
series expansion that needs to be truncated. Salamon et al. (2006) provide a table with
the term required to cope with the truncation error. A large number of first-order mass
transfer rate coefficients and their distributions estimated from field and laboratory test
results can be obtained from the works of Cosler (2004) and Haggerty et al. (2004).15

The mass flux, F , into the immobile region in memory function based approaches is
given by

F (x, t) =

t∫
0

g(t − τ)
∂um(x, τ)

∂τ
dτ = g ∗

∂um
∂t

+ g(t)um(x,0) (14)

where g is the memory function and ∗ denotes the convolution product. Carrera et
al. (1998) approximate this product using the integro-differential approach of Herrera20

and Rodarte (1973) and Herrera and Yates (1977). An equivalent alternative is to
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approximate g by

g(t) =
∫ ∞
0
αb(α)e−αtdα (15)

where b(α) (T) is a density function of first-order rate coefficients. Haggerty et al. (2000)
provide explicit expressions for the density and memory functions for various models or
geometries. To use the approach of Sect. 3, we need to express the memory function5

as

g(t) =
∞∑
j=1

αjβje
−αj t (16)

Note that Haggerty et al. (2000) included the factor αjβj on the memory function, unlike
Carrera et al. (1998) who placed it on flux F . However, both approaches are equivalent.
We calculate the convolution product in Eq. (14), truncating the memory function at Nth10

term and following the same algebraic analysis described in the Appendix 1 of Carrera
et al. (1998). Thus, we can express F k+θ as

F k+θ =
N∑
j=1

βjαje
−αjθ∆tIkj +

∆um
∆t

N∑
j=1

βj
(

1 − e−αjθ∆t
)

(17a)

Ik+1
j =

∫ tk+1

0
e
−αj
(
tk+1−τ

)
∂um
∂τ

dτ = e−αj∆tIkj +

(
1 − e−αj∆t

)
αj

∆um
∆t

(17b)15

The equivalence between our approach and integro-differential approach becomes ev-
ident by comparing Eqs. (17a) and (10). Also note that, from Eq. (9) we obtain the
recursive relationship

uk+1
m − uk+1

im,j = e
−αj∆t

(
ukm − ukim,j

)
+

(
1 − e−αj∆t

)
αj

∆um
∆t

(18)
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which is similar to Eq. (17b). Therefore, we arrive at Eqs. (7b) and (10) by imposing
the condition

Ikj = ukm − ukim,j (19)

Truncation criteria and expression for the final terms of truncated multi-rate series can
be found in Haggerty and Gorelick (1995) and Salamon et al. (2006). In the case5

of diffusion into different geometries, they proposed the same criteria to evaluate βN .
However, while Haggerty and Gorelick (1995) suggested writing αN as the rest of the
αj coefficients (i.e., Eq. 13a), Salamon et al. (2006) proposed the following expressions

βN =

1 −
N−1∑
j=1

aj

γ2
j

Rimφim (20a)

10

αN = λ

(
1 −

N−1∑
j=1

aj
γ2
j

)
(

1 − λ
N−1∑
j=1

aj
γ4
j

) Dim
RimL

2
im

(20b)

where λ for layers, spheres, cylinders are given by Salamon et al. (2006).
Dentz and Berkowitz (2003) found a mathematical equivalence between MRMT and

the CTRW model (Berkowitz and Scher, 1998; Berkowitz et al., 2006; Margolin et
al., 2003; Salamon et al., 2006; Benson and Meerschaert, 2009). They formulated15

a CTRW approach which is formally equivalent to the integro-differential formulation
of MRMT presented in this paper. They present a map between the memory function
defined in the context of MRMT and the transition time distribution ψ(t)

g∗(s) =
1 + ψ ∗(s)(1 + sτ0)

sτ0ψ ∗(s)
, (21)
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where τ0 defines which part of the medium is mobile or immobile and as such is related
to the mobile and immobile volume fractions of the medium (see Dentz and Berkowitz,
2003). The Laplace transform of the memory function, g∗, can be expanded into a se-
ries in s according to

g∗(s) =
∞∑
k=1

(−1)kaks
k , (22)5

where explicit expressions for the akare given in Dentz and Berkowitz (2003). For g∗(s)
given by the Laplace transform of Eq. (16), we obtain

g∗ (s) =
∞∑
j=1

αjβj
αj + s

=
∞∑
j=1

βj

∞∑
k=1

(−1)kα−k
j sk =

∞∑
k=1

(−1)ksk

 ∞∑
j=1

α−k
j βj

 (23)

By comparison of Eqs. (22) and (23), we obtain relations between the βj and the ak for
a given series of rates αj10

ak =

 ∞∑
j=1

α−k
j βj

 (24)

The latter expression can be inverted (numerically) in order to obtain explicit expres-
sions for the weights βj and thus for the memory function g(t) that simulates the trans-
port behavior in a CTRW.

Dentz and Berkowitz (2003) also proposed the use of the truncated power law mem-15

ory function, which has become widely used because breakthrough curves often dis-
play a power law behavior at late times (see, e.g., Zhang et al., 2007; Willmann et al.,
2008). The late time behavior of the breakthrough curve can be related to the memory
function (Haggerty et al., 2000). This memory function only requires specifying the
slope of the memory function in log-log scale, mg, and the interval of time (t1, tN ) on20

which this function displays a power-law behavior. A practical method to calculate the
2428
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distribution coefficients βj consists of, first, calculate the αj values assuming they are

evenly distributed on a logarithmic scale while fixing α1=t
−1
N and αN=t

−1
1 . Secondly,

we obtain a recursive relationship for βj values by approximating the memory function
with expressions of successive increasing orders, i.e.

log

 N∑
i=j

βiαi

 − log

 N∑
i=j+1

βiαi

 = mg(log tj − log tj+1) (25)5

where tj=α
−1
j . This leads to

βj =

N∑
i=j+1

βiαi

αj

[( αj
αj+1

)mg

− 1
]

j = 1 . . . N − 1 (26)

To get the values of βj , we first assign an arbitrary value to βN (e.g., βN=1). Then we

apply Eq. (26) and finally scale these values imposing the condition
N∑
j=1
βj=1.

5 Numerical implementation10

5.1 Module structure, main attributes and subroutines

The equations described in the previous sections have been implemented in a Fortran
90 module called mod process MRMT.f90 , which is structured following the coding
guidelines and rules proposed by Slooten et al. (2008). The module defines MRMT
objects by means of type t immobile and provides services to solve the equation15

described here. The main attributes of the module contained in the type t immobile
are detailed in Fig. 2. The main services of mod process MRMT.f90 are described in
Table 1. Auxiliary subroutines, private arguments and attributes are commented within
mod process MRMT.f90 .
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5.2 Input files

Input data of mod process MRMT.f90 are entered in XML format. Reading of input
files is achieved by the use of the modules flib sax.f90 and flib xpath.f90 .
These modules were obtained from Garcı́a (2004) and basically are libraries to handle
the reading of xml files. These libraries depends on other Fortran modules, which5

are stored in folders xmlreader and xpath , respectively. Based on the mathematical
equivalence of the different approaches explained in Sect. 4, four types of input files are
available: Parameters.xml , Coefficients.xml , ExpansionSeries.xml , and
PowerLaw.xml .

5.3 Embedding mod process MRMT.f90 into a standard numerical code10

The structure and arguments of mod process MRMT.f90 were designed so that state
variables and parameters characterizing the immobile domain are only accessible from
the module. This guarantees a minimal information exchange with the program units of
any host code to which the user would hope to link mod process MRMT.f90 . That fea-
ture helps to get a straightforward implementation of the present MRMT approach on15

a general advection-dispersion transport simulator programmed in Fortran, as shown
in Fig. 3. We assume that the user (programmer) has got any standard numerical code
for flow and solute transport that will be modified to include the multi-rate mass transfer
equations described in Sects. 2 and 3, according to the following steps:

– Add the file mod process MRMT.f90 and folders xmlreader and xpath con-20

taining all the XMLsupporting material into the source files of the host code. Also
copy the XMLinput file to the work directory, depending on the user’s application
and options given in Sect. 5.2.

– Include the “Use mod process MRMT” statement into the source code and de-
clare as many variables of type t immobile as required by the user’s application.25

We suggest an optional declaration because the user might want to use logical
2430
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variables indicating whether MRMT is or not included in the simulations. There-
fore, any variable declared as t immobile that could be an argument of host
code subroutines will be properly passed whether they are or not present. To cre-
ate these variables, immediately after declaration in the main transport code in-
clude as many callings to the Create subroutine as t immobile variables have5

been declared. Initialization also requires reading input files in the corresponding
section of the standard transport code, so include a calling to the Read XML
subroutine to read the mass-transfer parameters of each immobile zone. After ini-
tialization in the host code one has to initialize all variables of type t immobile ,
by calling the subroutine Initialize .10

– After calling the host code subroutines, modules or program units that construct
the system matrices A, D and b (Eq. 8), one has to modify D and b according
to Eqs. (11a and 11b). This action is shown in Fig. 3 for the case of including
MRMT into the solute transport problem. The subroutine ContriToMatrices
calculates de contribution of MRMT to D according to Eq. (11a). For each vari-15

able declared as t immobile , the user has to include a calling statements to
ContriToMatrices and ContriToSink subroutines. The user will need to
add the corrections due to MRMT. For instance

DO I=1,NUMNP
D(I) = D(I) + Dcorr(I)20

B(I) = B(I) + Bcorr(I)
END DO

where D and B would be arrays storing the matrices elements of system (8),
Dcorr and Bcorr arrays storing the corrections given by Eqs. (11a and 11b),
and NUMNPan integer variable representing the number of mobile nodes. Note25

that subroutines ContriToMatrices and ContriToSink must be called at
every time step. They can be called within the subroutines that form matrices D
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and b or after them, following the structure of the host code and user’s prefer-
ences, but before execution of the unit program that solve the system of Eqs. (8).

– After solving a time step of the transport problem (Fig. 3), the state variable of
the immobile domain, uim,j , must be updated according to Eq. (9). This is done
by calling the subroutine UpdateConc . If required, the total amount and the5

average value of u in the immobile domains can be computed calling subroutine
TotSolMass . Note that those quantities are saved within the internal structure
of the variable ImmbReg. However, they can be obtained by calling the subroutine
GetSolMass . Output subroutines are available to follow the evolution of the state
variable u at immobile regions (WriteConc ), as well as the total and average10

of u (WriteSolMass ). If required, these subroutines can be called within the
program unit for writing output results.

– Finally, it may be necessary and advisable to deallocate all the attributes of all
type t immobile variables used in the simulation. This can be achieved by
including a call to subroutine Destroy for each of these variables at the end of15

the transport simulation.

The module supports some characteristics of object-oriented programming. In fact, the
module was designed such that its types and operations are available from outside but
the details of the implementation are hidden from the user, i.e., the “black box” principle
(Gorelik, 2004). Moreover, the present module lies within the definition of objects be-20

longing to the “Process” class of the object-oriented framework tool PROOST (Slooten
et al., 2008). These functionalities would also permit to link other Fortran modules
or objects to the present module. For instance, reactive transport may be included
in both the mobile and immobile regions, by properly linking the object-oriented tool
CHEPROO (Bea et al., 2009) to both any conservative transport code and the module25

mod process MRMT.f90 .
mod process MRMT.f90 can be downloaded from http://www.h2ogeo.upc.es/

English/English/software.htm#Mod process MRMT.
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6 Applications

In order to assess the accuracy of the present approach, we embedded the module
into TRACONF (Carrera et al., 1993), a Fortran program for the simulation of water
flow and solute transport through porous media. The testing exercise is divided into
three parts. We first compare the present formulation with an analytical solution for5

delayed yield from storage (Boulton, 1955), to test its applicability to flow problem.
Next, we compare our approach with the integro-differential approach, simulating the
hypothetical radially convergent tracer test described by Alcolea et al. (2001). Finally,
we apply the present approach to solve two problems of radial flow to a pumping well
(Haggerty and Gorelick, 1995).10

6.1 Verification for a flow problem

Boulton (1955) developed an analytical solution for unsteady radial flow allowing de-
layed yield from storage. This problem can be described by Eq. (1) with N=1, as-
suming q=0. We model a hypothetical pumping test, considering a transmissivity of
T=0.01 m2/s, Sm=0.001 and Sim=0.1, and a pumping rate of 0.04πm3/s. Initial head15

equals zero. We compare our non-local in time approach with the Boulton’s solution
for three values of the rate coefficient α=2.5×10−6, 10−5 and 5×10−5 s−1. Boulton
(1955) referred to α as an empirical constant. We considered a mesh of 208 nodes
with a spacing size ∆r increasing geometrically with a factor of 1.08. The integration
scheme in time was semi-implicit with variable ∆t.20

Figure 4 displays the evolution of heads at a distance of R=51.6 m from the well. The
dimensionless time tD=T t/SmR

2 was used. We can see that the numerical solution
(solid line) obtained with the present approach matches the analytical solution (circles)
obtained by Boulton (1955). The figure shows clearly the influence of the rate coef-
ficient α on the system behavior. As α decreases, the system approaches the case25

in which there is no delayed yield. Again, as α increases the system behaves as it is
constituted only by one domain under a mobile storage dominated regime. This is ex-
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pected because for very large values of α, the water mass transfer between mobile and
immobile zones occurs nearly instantaneously: mobile and immobile domains tend to
be at equilibrium.

6.2 Verification for a transport problem

We model the convergent tracer test described by Alcolea et al. (2001). A tracer5

mass of 7.88 g is injected 8 m away from a well pumping 150 m3/d. The radius of the
pumping well and the aquifer thickness are 0.2 m and 5 m, respectively. Porosity of the
mobile domain is φm=0.1. The immobile zone consists of layers of length Lim=0.05 m
and porosity φim=0.045. The diffusion coefficient in the immobile zone was set to
Dim=0.001 m2/d. TRANSIN code uses the integro-differential approach to solve matrix10

diffusion problems. Accordingly, we have chosen the ExpansionSeries option of our
module, which used Eq. (13a and b) to define α’s and β’s with N=50. A uniform mesh
with a grid size ∆r=0.005 m (93 nodes) and a fully implicit integration scheme in time
was used in the simulations.

Figure 5 shows the breakthrough curves at the pumping well simulated with the15

present approach and with TRANSIN, which compare quite well. The maximum relative
error was 1%.

6.3 Verification for a field problem

Haggerty and Gorelick (1995) presented a case of radial flow to a pumping well, in the
context of PCE removal from the Borden sand aquifer under realistic pumping rates.20

To solve the governing equations, they expressed the MRMT model in dimensionless
form and used a semianalytic method. Here we only give the main characteristics con-
cerning with our approach, as the specifications of the problem are well described in
their work (Haggerty and Gorelick, 1995). Two hypothetical case studies were consid-
ered: the remediation of a homogeneous aquifer (Borden sand) and the remediation25

of a hypothetical heterogeneous aquifer with a mixture of mass transfer processes. In
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both cases we used a mesh of 102 nodes with a spacing size ∆r decreasing in such
a way that all cells have the same volume and ∆r1=1.39 m. The integration scheme in
time was semi-implicit with variable ∆t.

The first case study simulates the cleanup history of a homogeneous aquifer where
seven immobile zones are associated to a distribution of grain sizes. The grains are5

assumed to be spherical; the αj and βj coefficients are given in Table 2 of Haggerty
and Gorelick (1995). As in their work, we have considered 50 exponential terms to
adequately describe each immobile domain. Figure 6a displays the evolution of the
PCE mass fraction remaining through an scenario of 500 d. We can see that the nu-
merical solution (solid line) obtained with the present approach match very well the10

semi-analytical solution (dashed line) obtained by Haggerty and Gorelick (1995).
In the second numerical experiment, we simulate the removal of PCE from an het-

erogeneous aquifer. Here, heterogeneity arises from four immobile zones of different
geometry (porous grains, grain aggregates, clay layers and clay pods) and two immo-
bile zones characterized by a surface reaction (slow and fast reactions). The mass-15

transfer parameters are those appearing in Table 3 of Haggerty and Gorelick (1995).
Note that these parameters are assumed locally heterogeneous, but they have the
same distribution at all points in space. Once again, 50 terms were used to describe
each geometry and only a single term for each reaction. Figure 6b shows predictions
of the mass fraction of PCE remaining in the aquifer during a remediation scenario20

of 20 000 d. Again, the evolution of the mass fraction remaining obtained through the
present approach (solid line) fit well the results predicted by the semi-analytical solution
(dashed line). Therefore, the present model can reproduce the behavior of heteroge-
neous media characterized by different types and rates of mass transfer.

7 Conclusions25

We have developed an easy-to-use numerical implementation of multi-rate mass trans-
fer, which embeds existing formulations for MRMT. We developed a simple numerical
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method, which is physically consistent with and mathematically equivalent to other
formulations such as integro-differential formulation. The present approach avoids
the spatial discretization of the immobile domain, because it solves state variables
of that zone as explicit function of the state variables in the mobile domain. The
numerical method is accurate, as it involves an analytical solution for the mass bal-5

ance equations at immobile zones. We also have implemented the method into
a Fortran 90 module that can be easily embedded into standard numerical codes
for flow and solute transport to model multi-rate mass transfer. Portability of the
module has been achieved because of its object-oriented structure. The module
has been tested by comparison with published solutions and is publicly available at10

http://www.h2ogeo.upc.es/English/English/software.htm#Mod process MRMT.
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Table 1. Description of the main subroutines of mod process MRMT.f90 .

Subroutine Task description Arguments

Create It is a constructor function called at the beginning of the program. It nullifies
all the pointer parameters and sets all the other parameters to zero if they are
integer and real.

– this : type t immobile

Destroy Destructor function is called in the end as it deallocates all the pointers allo-
cated. – this : type t immobile

Read XML It reads immobile attributes from *.xml files. Checks if there is any error in
opening the XMLfile. The subroutine read xml loc is called twice. First,
without optional attribute, so it reads the parameters of the immobile zones
from the XML file. Later, when it is called with the optional attribute this ,
the parameters are allocated with space and values.

– this : type t immobile

– namefile : type character for input file name

Initialize Allocates the variables and takes the initial condition of the state variable in
the mobile region to set an initial condition in the immobile domain. This sub-
routine is called after reading values from the input XMLfile.

– this : type t immobile

– frac nodes : type integer for number of nodes in mobile region

– conc imm: real array with dimension frac nodes to set the ini-
tial condition of the state variable in the immobile region. This
attribute is an optional variable with zero default value.

ContriToMatrices Computes the contribution to the storage matrix D of the system Eq. (8) ac-
cording to Eq. (11a). This is one of the main computational subroutines and
should be called whenever there is a change in time step.

– this : type t immobile

– delt : type real for time step

– theta : type real for time integration factor

– contri stor : real array with dimension this%frac nodes
for contribution to storage matrix

ContriToSink Computes the contribution to the source/sink term b of equations system (8)
according to Eq. (11b). This subroutine should be called at every time step in
conjunction with ContriToMatrices in order to solve governing equations
with MRMT.

– this : type t immobile

– delt : type real for time step

– theta : type real for time integration factor

– prevConc mob: real array with dimension this%frac nodes
for the state variable in mobile domain at previous time step

– contri sink : real array with dimension this%frac nodes
for contribution to sink/source term

UpdateConc Updates state variable of immobile region according to Eq. (9). The subroutine
takes as arguments the current and previous time step values of the state
variable in mobile region. UpdateConc should be called only after calling the
contributions subroutines as they require previous time step state variables.

– this : type t immobile

– delt : type real for time step

– theta : type real for time integration factor

– prevConc mob: real array with dimension this%frac nodes
for the state variable in mobile domain at previous time step

– CurrConc mob: real array with dimension this%frac nodes
for the state variable in mobile domain at the end of the current
time step
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Table 1. Continued.

Subroutine Task description Arguments

TotSolMass Computes the total amount of a state variable u (e.g., total mass of solute) in
all the immobile zones for a particular mobile node, the total amount and the
average value of u in the immobile region.

– this : type t immobile

WriteConc Writes the state variable (e.g., concentration) in the immobile region in a DAT
file. – this : type t immobile

– time : type real for time at which the state variable is stored

– fileID : type integer and optional . If present, output file
will be a unit number; if not present output will be written to file
conc imm.out

WriteSolMass Writes the values of solute mass in a separate DAToutput file.

– this : type t immobile

– time : type real indicating the time at which results are stored

– fileID : type integer and optional . If present, output file
will be a unit number; if not present output will be written to file
Sol mass.out

GetSolMass Get the values of total mass of solute and the average concentration in the
immobile zones – this : type t immobile

– tomasim : real array with dimension this%frac nodes return-
ing the total amount of u in the immobile domain

– avcon : real array with dimension this%frac nodes returning
an average value of the state variable in the immobile domain
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Discretization of the mobile domain

m

im,N-1

im,N

im, j

im,1

im,2

…
…

immobile blocks

Fig. 1. Hypothetical numerical discretization of the mobile and immobile domains.
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type, public:: t_immobile

private

character(len=100):: name !Descriptor of the immobile region

integer:: nimz !Number of types of immobile zones

integer:: nimztot !Total number of immobile zones

integer:: frac_nodes !Number of nodes in the mobile region

double precision, pointer:: por(:)        !Porosity of the immobile region (Eqs. 3 and 4)

double precision, pointer:: vol_aqui(:)   !Volume of each cell of the mesh used to solve the mobile region 

(Eq. 11)

double precision:: vol_mob !Parameter for volume of aquifer

double precision, pointer:: len_imm(:)    !Average size of matrix blocks or characteristic length of immobile 

region (Eqs. 2 and 4)

double precision, pointer:: diff(:)       !Diffusion or conductivity coefficient in the immobile zones

(Eqs. 2 and 4)

double precision, pointer:: rtd_fac(:)    !Retardation factor (Eqs. 3 and 4)

double precision, pointer:: conc_mat(:,:) !Concentration in the immobile region with dimension one representing 

nº of immobile zones and two representing nº of mobile nodes, in 

case of solute transport. Pressure head in the immobile region for 

flow equation.

double precision, pointer:: totmass_imm(:)!Total "mass" in the immobile region at the mobile nodes

double precision, pointer:: avg_conc(:)   !Average "concentration" in the immobile zone at the mobile nodes

double precision, pointer:: alpha(:)      !First-order rate coefficients appearing in Eq. (6)

double precision, pointer:: betha(:)      !Capacity coefficients of immobile phases appearing in Eq. (5)

double precision, pointer:: alphaset(:)   !To store all alpha coefficients in the Expansion Series and Power 

Law options (e.g., Eq. 14a)

double precision, pointer:: alphabetha(:) !Product of alpha and betha coefficients (Eqs. 7a, 11b, 16)

character(len=100), pointer:: geometry(:) !Geometry or name of the process in the immobile regions

integer, pointer:: nexpterms(:) !Number of expansion terms in integro-differential, memory function 

and CTRW formulations (Eqs. 18-26)

double precision:: mg !Slope of the memory function for power-law behavior (Eqs. 25 and 26)

double precision:: taui !Initial time of power-law behavior (Eqs. 25 and 26)

double precision:: tauf !Final time of power-law behavior (Eqs. 25 and 26)

character(len=100):: namemodel !In the power law approach, namemodel = WCSV for Willman et al. 

(2008) method, namemodel = SCK for the present method (Eq. 26).

end type t_immobile

Figure 2
 

Fig. 2. Definition of the data type t immobile .
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Fig. 3. Linking mod process MRMT.f90 to a conventional numerical code for flow and trans-
port.
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Fig. 4. Comparison between the present approach and an analytic solution (Boulton, 1955) for
delayed yield from storage.
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Fig. 5. Verification test with TRANSIN code. Breakthrough curve of tracer in a radial convergent
test.
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Fig. 6. Comparison between the present approach and a semi-analytic solution (Haggerty and
Gorelick, 1995). (a) Homogeneous aquifer. (b) Mixture of mass transfer processes (heteroge-
neous aquifer).
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Abstract

Many flow and transport phenomena, ranging from delayed storage observed in pump-
ing tests to tailing in river or aquifer tracer breakthrough curves, display non-equilibrium
behavior. Usually, they are modeled by non-local in time formulations, such as multi-
porosity, multiple processes non equilibrium, continuous time random walk, memory5

functions, integro-differential equations, fractional derivatives or multi-rate mass trans-
fer (MRMT), among others. We develop a MRMT algorithm that can be used to repre-
sent all these formulations. The method is accurate, computationally inexpensive and
easy to implement in groundwater or river flow and transport codes. In fact, we present
a module that can be linked to existing programs with minimal programming effort. Its10

accuracy is verified by comparison with existing solutions.

1 Introduction

Solving flow and solute transport phenomena in natural media requires using variables,
such as heads and concentrations, that characterize the state of the system at every
point. Therefore, they are termed state variables. State variables are assumed repre-15

sentative of a small portion of water around such point. This implies that the traditional
flow and transport equations implicitly assume local equilibrium.

Even though local equilibrium is assumed by default, non-equilibrium behavior is fre-
quently observed in water flow and solute transport through water bodies. Numerous
causes may explain non-equilibrium. In water flow through permeable media, it has20

been attributed to delayed storage mobilization, either because of resistance at the
aquifer free surface (Boulton, 1955; Neuman and Witherspoon, 1971; Neuman and
Tartakovsky, 2008), or because of resistance at low permeability blocks (Warren and
Root, 1963). It has also been attributed to heterogeneity (Cortis and Knudby, 2006).
In solute transport, it has been attributed to diffusion-limited storage into immobile re-25

gions, kinetic sorption or heterogeneity (Brusseau et al., 1989; Valocchi, 1990; Sardin
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et al., 1991; Cvetkovic et al., 1992; Toride et al., 1993; Haggerty and Gorelick, 1995;
Ray et al., 1997; Carrera et al., 1998; Salamon et al., 2006; Vogel et al., 2006; Zhang
et al., 2006; Zhang et al., 2007; Alcolea et al., 2008; Willmann et al., 2008; Kumar,
2008; Gouze et al., 2008). Non-equilibrium also has been observed in solute trans-
port through rivers that are influenced by the exchange of water between the river and5

the underlying hyporheic zone (Fernald et al., 2001; Boano et al., 2007; Marion et al.,
2008) or by aggregated dead-zones (Beer and Young, 1983; Lees et al., 1998, 2000;
Davis et al., 2000).

Non-equilibrium is typically modeled by non-local in time formulations. Non-local in
time means that the mobilization of storage does not depend solely on heads (or con-10

centration) at the current time, but also on their past history. In practice, this implies
that a sink-source term on the past history (e.g. Carrera et al., 1998) or that an addi-
tional storage term (e.g. Haggerty and Gorelick, 1995) are added to the mass balance
equations. It is the form of such terms what sets different non-local formulations apart.
The number of non-local formulations is too long to list. The most widely used have15

been:

– Multi-rate mass transfer (MRMT) (Haggerty and Gorelick, 1995).

– Fractional derivatives (Barker, 1988; Acuna and Yortsos, 1995; Schumer et al.,
2003).

– Continuous time random walk (CTRW) (Berkowitz and Scher, 1998; Dentz and20

Berkowitz, 2003; Benson and Meerschaert, 2009).

– Memory functions (Carrera et al., 1998; Haggerty et al., 2000; Gouze et al., 2008).

Among these, the MRMT formulation is appealing, first, because it is easy to under-
stand. In MRMT formulations, the domain is assumed to consist of a mobile contin-
uum and several overlapping immobile continua. These exchange mass linearly with25

the mobile region. In this way, the state of immobile zones can be characterized by
heads (or concentrations). That is, the traditional single state variable can be viewed
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as substituted by a continuum of state variables. Effectively, these work as local state
variables, representing a local equilibrium in each of the immobile regions.

A second virtue of MRMT approaches is that they have been proven to be equiva-
lent to other non-local formulations. Haggerty et al. (2000) showed that the MRMT is
equivalent to the memory functions approach of Carrera et al. (1998). The latter is also5

equivalent to the non-local in time version of CTRW (Dentz and Berkowitz, 2003), which
can also represent non-local in space terms. The same can be said about fractional
derivatives (Berkowitz et al., 2002).

Arguably, the most widely extended form of MRMT is that of Haggerty and Gorelick
(1995). They developed the model to account for small-scale variation in rates and10

types of mass transfer by using a sequence of first-order exchange terms to represent
mass transfer with an equal number of immobile zones. Their work and other similar
studies have revealed that multiple-porosity models can also be used to solve more
general mass-transfer problems and their combinations. For instance, Valocchi (1985)
studied the conditions for which local equilibrium is a valid assumption for modeling15

the transport of sorbing solutes in homogeneous soils. Gerke and van Genuchten
(1993a, b) presented a dual-porosity model to simulate transient water flow and solute
transport in unsaturated fractured rock formations and structured soils. Sánchez-Vila
and Carrera (2004) analyzed the moments of the breakthrough curves in tracer tests
and concluded that macrodispersion can be represented by means of mass transfer20

terms. Wang et al. (2005) developed a direct integration method to solve dual-domain
multi-rate mass transfer coupled with advective-dispersive transport. Through their ap-
proach they extended the MRMT formulation of Haggerty et al. (2000) to more general,
transient flow fields. El-Zein et al. (2005) developed a numerical method to solve mass-
transfer problems in intact soils, soils with non-equilibrium sorption and immobile so-25

lutions, fissured clayey soils, and structured topsoils, in addition to their combinations.
Zhou et al. (2006) proposed a conceptual model of multi-process matrix diffusion in
a single fracture consisting in a sequence of three mechanisms: diffusion into stagnant
water and infilling materials in fractures, diffusion into a degraded matrix zone adjacent
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to fractures, and further diffusion into an intact matrix zone away from fractures. They
validated their model with a field tracer test. In the same way, Liu et al. (2007) showed
that the dual-domain mass transfer model can reproduce both the near-source peak
and the downstream low-concentration spreading when small-scale high-conductivity
preferential flow paths are present in a homogeneous porous matrix.5

The problem with MRMT approaches, and with most non-local formulations for that
matter, is that they are usually implemented to solve a particular numerical application.
They are typically solved through Laplace transformation, which facilitates overcoming
the nuisances of fractional derivatives or non-locality. These formulations are numeri-
cally efficient, but hard to translate to non-linear phenomena, such as multicomponent10

reactive transport. As a result, these formulations have been typically linked to specific
codes, which hinders their general use. Thus, the objective of the present work is to
propose an easy numerical implementation of multi-rate mass transfer that is equiva-
lent to other existing formulations, and that also is able to describe other phenomena
distinct from solute transport. The present approach is implemented in a Fortran 9015

module that can be quite easily embedded into any existing numerical code for flow
and solute transport.

2 Governing equations

Non-local in time formulations can be used to enrich the behavior of either the flow or
transport equations, or both. In either case, they can be viewed in two complementary20

fashions: (i) as a continuum of delayed storage terms, in which case these equations
represent the total mass balance in both mobile and immobile regions, or (ii) as a con-
tinuum of sink/source terms, which act as linear mass exchange terms between mobile
and immobile zones. In practice, the continuum is substituted by a discrete number of
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terms. Therefore, using the first view, the flow equation becomes

Sm
∂hm
∂t

+
N∑
j=1

Sim,j
∂him,j
∂t

= −∇ · q + q (1)

where t (T) is time, hm (L) is head in the mobile zone, Sm (L−1) is the spe-
cific storage coefficient, q (L/T) is water flux and q (T−1) represents a sink/source
(recharge/extraction). him,j (L) and Sim,j (L−1) are head and specific storage coeffi-5

cients of the j th immobile zone, respectively. Water storage in each immobile region is
fed by a linear exchange with the mobile domain

Sim,j
∂him,j
∂t

= σim,j
Kim,j
Lim,j

(
hm − him,j

)
(2)

where σim,j (L2/L3) is the specific surface of the j th immobile region, Lim,j (L) its
distance from the mobile zone and Kim,j (L/T) its hydraulic conductivity.10

Analogously, the solute transport equation expresses the solute mass balance per
unit volume of aquifer

φmRm
∂cm
∂t

+
N∑
j=1

φim,jRim,j
∂cim,j
∂t

= ∇ · (Dm · ∇cm) − q · ∇cm (3)

where cm (M/L3) is the mobile concentration, Dm (L2/T) is the hydrodynamic disper-
sion tensor,φm (L3/L3) is the mobile porosity (volume of pores per unit aquifer volume),15

and Rm (–) is the mobile zone retardation factor. Similarly, cim,j (M/L3), φim,j (L3/L3)
and Rim,j (–) are the concentration, porosity and retardation factor of the j th immobile
zone. As in flow phenomena, mass balance in the j th immobile region is given by

Rim,jφim,j
∂cim,j
∂t

= σim,j
φ′
im,jDim,j
Lim,j

(
cm − cim,j

)
(4)
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where φ′
im,j (L3/L3) is its porosity (volume of pores per unit volume of immobile re-

gion), Dim,j (L2/T) is a molecular diffusion coefficient in the j th immobile region. Equa-
tion (4) can be somewhat simplified by writing φ′

im,j as a function of φim,j (see e.g.,
Carrera et al., 1998). However, we must bear in mind that the physical meaning of the
other parameters in Eqs. (2) and (4) is somewhat approximative. Bearing this in mind,5

Eqs. (1)–(4) can be written in general as

β
∂um
∂t

+
N∑
j=1

βj
∂uim,j
∂t

= Lu (um) (5)

∂uim,j
∂t

= αj
(
um − uim,j

)
j = 1 . . . N (6)

where u=h, for flow or u=c, for solute transport. The βj (dimensionless) coefficients10

are called capacity coefficients (Rim,jφim,j for transport or Sim,j for flow) to account
for the distribution of mass in the immobile phases; β (dimensionless) is the capacity
coefficient of the mobile phase (Rmφm for transport or Sm for flow); and αj (T−1) is
a first-order mass transfer rate coefficient. The right-hand side of Eqs. (1) and (3) is
designated generically by the operator Lu.15

Denoting Fj the j th term of the sum in Eq. (5), the governing equations for the im-
mobile zones are given as

Fj = βj
∂uim,j
∂t

= βjαj (um − uim,j ) j = 1 . . . N (7a)

F =
N∑
j=1

Fj (7b)20
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3 General formulation for MRMT

Spatial and time discretization of either the flow or transport equations under local
equilibrium assumptions (i.e., without MRMT) leads to a linear system of equations
(e.g., Medina and Carrera, 1996)

D
∆um
∆t

+ Auk+θm = bk+θ (8)5

where ∆um=u
k+1
m −ukm, ∆t=tk+1−tk is the time step, θ is a weighting factor and the

superscripts stand for the time in which the variable is evaluated.
Accounting for MRMT can be achieved in two ways: (a) using an appropriate mesh

with nodes representing the immobile zones (e.g., Neuman, 1982), or (b) by eliminating
the unknown in the immobile region as an explicit state variable, i.e. expressing uim,j as10

a function of um (e.g., Carrera et al., 1998). Here, we have adopted the later approach
because: first, it maintains the number of unknowns unchanged and, second, it is
actually simpler to implement into existing generic flow and transport simulation codes.

Figure 1 displays a schematic representation of a hypothetical numerical mesh that
includes both the mobile and immobile domains. We assume that each node m of the15

mobile zone is connected to all adjacent nodes of the mesh and to all the immobile
blocks. Node im, j of the immobile region is only connected to node m. Geometrically,
node im, j overlaps with nodem. We show below that the variable u at node im, j (i.e.,
uim,j ) can be solved explicitly as a function of um. Therefore, node im, j need not be
an “uncertain” node, but can be considered as a zero-D node.20

We first solve the N first-order ordinary differential Eq. (6) in terms of ∆um,
while assuming that um varies linearly during each time increment. That is,
um=u

k
m+(∆um/∆t)(t−t

k). This leads to N first-order linear differential equations,
whose solution is

uim,j (t) = ukim,je
−αj (t−t

k )+ukm
(

1 − e−αj (t−t
k )
)
+
∆um
∆t

[
(t − tk) − 1

αj

(
1 − e−αj (t−t

k )
)]

(9)25
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Combining Eqs. (6), (7a) and (9), the flux Fj evaluated at time tk+θ will be

F k+θj = βjαj
(
uk+θm − uk+θim,j

)
= βjαj

(
ukm − ukim,j

)
e−αjθ∆t +

∆um
∆t

βj
(

1 − e−αjθ∆t
)

(10)

Notice that this flux is only a function of u at the previous time step and ∆um. The total
mass flux, F k+θ, is given by Eq. (7b). Substituting the resulting expression into Eq. (8)5

leads to an identical system, except that the storage matrix and sink/source term are
modified according to

(D∗)i i = (D)i i + vi

N∑
j=1

βj
(

1 − e−αjθ∆t
)

(11a)

(b∗)k+θi = (b)k+θi − vi
N∑
j=1

βjαj
[
ukm,i −

(
ukim,j

)
i

]
e−αjθ∆t (11b)10

where ukm,i is the value of u at node i of the mobile region and time tk , and
(
ukim,j

)
i

the corresponding value in the j th immobile block, and vi is the volume of cell i in
volume integrated formulations (e.g., finite element) and is equal to 1 in discretized
formulations (e.g., finite differences). Finally, it is necessary to update uim,j at the
end of each time step using Eq. (9). This approach is quite simple to program and15

should lead to accurate solutions at a very low computational cost. As with the integro-
differential approach, the number of nodes/elements is not altered by the addition of
the MRMT terms.
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4 Equivalence with other similar approaches

As mentioned in the introduction, a large number of non-local in time schemes have
been presented by different authors (Beer and Young, 1983; Sudicky, 1989; Haggerty
and Gorelick, 1995; Carrera et al., 1998; Lees et al., 2000; Fernald et al., 2001; Dentz
and Berkowitz, 2003; Schumer et al., 2003; Boano et al., 2007; Marion et al., 2008).5

This section is devoted to discussing such equivalence so as to facilitate using them
in the proposed formulation. Haggerty et al. (2000) provided a comparison table with
different MRMT formulations considering governing equations similar to Eqs. (5) and
(6). The present approach is essentially identical to that of Haggerty and Gorelick
(1995). The main difference is that they formulated their equations per unit volume of10

water. Therefore, their capacity coefficients are equal to the coefficients βj of Eqs. (5)
and (6), but divided by the mobile capacity, β. Denoting βjHG and αjHG the capacity
and first-order mass transfer coefficients considered by Haggerty and Gorelick (1995),
we have the following equivalence relationship

βjHG = βj/β (12a)15

αjHG = αj (12b)

We have preferred to use capacity coefficients as defined in Eq. (5) to keep the phys-
ical meaning and consistence of the governing equations as mass balances per unit
volume of aquifer.20

Many schemes approximate the effect of the immobile region by a continuous mem-
ory function. The governing equations are then solved in the Laplace domain. These
solutions can be approximated by expanding the memory function as a sum of expo-
nentials (Carrera et al., 1998). Each summand can then be solved as explained in
Sect. 3. For the purposes of comparison with our approach, the important issue is to25

acknowledge that such approaches are typically defined in terms of overall parameters
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for the whole immobile region (as opposed to independent αj and βj ). For the works
of Carrera et al. (1998) and Salamon et al. (2006), the equivalence is given by:

αj = γ
2
j

Dim
RimL

2
im

(13a)

βj =
aj

γ2
j

Rimφim (13b)5

where φim (L3/L3), Rim, Dim (L2/T) and Lim (L) are characteristic parameters of the
entire immobile domain. Coefficients aj and γj can be found in the literature (e.g.,
Haggerty and Gorelick, 1995; Carrera et al., 1998; Haggerty et al., 2000; Salamon
et al., 2006) for diffusion into different geometries (layered, cylindrical, spherical and
veins) and the standard first-order model. These formulations result from the analytical10

solution of the diffusion equation. The coefficients in Eqs. (13) result from an infinite
series expansion that needs to be truncated. Salamon et al. (2006) provide a table with
the term required to cope with the truncation error. A large number of first-order mass
transfer rate coefficients and their distributions estimated from field and laboratory test
results can be obtained from the works of Cosler (2004) and Haggerty et al. (2004).15

The mass flux, F , into the immobile region in memory function based approaches is
given by

F (x, t) =

t∫
0

g(t − τ)
∂um(x, τ)

∂τ
dτ = g ∗

∂um
∂t

+ g(t)um(x,0) (14)

where g is the memory function and ∗ denotes the convolution product. Carrera et
al. (1998) approximate this product using the integro-differential approach of Herrera20

and Rodarte (1973) and Herrera and Yates (1977). An equivalent alternative is to
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approximate g by

g(t) =
∫ ∞
0
αb(α)e−αtdα (15)

where b(α) (T) is a density function of first-order rate coefficients. Haggerty et al. (2000)
provide explicit expressions for the density and memory functions for various models or
geometries. To use the approach of Sect. 3, we need to express the memory function5

as

g(t) =
∞∑
j=1

αjβje
−αj t (16)

Note that Haggerty et al. (2000) included the factor αjβj on the memory function, unlike
Carrera et al. (1998) who placed it on flux F . However, both approaches are equivalent.
We calculate the convolution product in Eq. (14), truncating the memory function at Nth10

term and following the same algebraic analysis described in the Appendix 1 of Carrera
et al. (1998). Thus, we can express F k+θ as

F k+θ =
N∑
j=1

βjαje
−αjθ∆tIkj +

∆um
∆t

N∑
j=1

βj
(

1 − e−αjθ∆t
)

(17a)

Ik+1
j =

∫ tk+1

0
e
−αj
(
tk+1−τ

)
∂um
∂τ

dτ = e−αj∆tIkj +

(
1 − e−αj∆t

)
αj

∆um
∆t

(17b)15

The equivalence between our approach and integro-differential approach becomes ev-
ident by comparing Eqs. (17a) and (10). Also note that, from Eq. (9) we obtain the
recursive relationship

uk+1
m − uk+1

im,j = e
−αj∆t

(
ukm − ukim,j

)
+

(
1 − e−αj∆t

)
αj

∆um
∆t

(18)
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which is similar to Eq. (17b). Therefore, we arrive at Eqs. (7b) and (10) by imposing
the condition

Ikj = ukm − ukim,j (19)

Truncation criteria and expression for the final terms of truncated multi-rate series can
be found in Haggerty and Gorelick (1995) and Salamon et al. (2006). In the case5

of diffusion into different geometries, they proposed the same criteria to evaluate βN .
However, while Haggerty and Gorelick (1995) suggested writing αN as the rest of the
αj coefficients (i.e., Eq. 13a), Salamon et al. (2006) proposed the following expressions

βN =

1 −
N−1∑
j=1

aj

γ2
j

Rimφim (20a)

10

αN = λ

(
1 −

N−1∑
j=1

aj
γ2
j

)
(

1 − λ
N−1∑
j=1

aj
γ4
j

) Dim
RimL

2
im

(20b)

where λ for layers, spheres, cylinders are given by Salamon et al. (2006).
Dentz and Berkowitz (2003) found a mathematical equivalence between MRMT and

the CTRW model (Berkowitz and Scher, 1998; Berkowitz et al., 2006; Margolin et
al., 2003; Salamon et al., 2006; Benson and Meerschaert, 2009). They formulated15

a CTRW approach which is formally equivalent to the integro-differential formulation
of MRMT presented in this paper. They present a map between the memory function
defined in the context of MRMT and the transition time distribution ψ(t)

g∗(s) =
1 + ψ ∗(s)(1 + sτ0)

sτ0ψ ∗(s)
, (21)
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where τ0 defines which part of the medium is mobile or immobile and as such is related
to the mobile and immobile volume fractions of the medium (see Dentz and Berkowitz,
2003). The Laplace transform of the memory function, g∗, can be expanded into a se-
ries in s according to

g∗(s) =
∞∑
k=1

(−1)kaks
k , (22)5

where explicit expressions for the akare given in Dentz and Berkowitz (2003). For g∗(s)
given by the Laplace transform of Eq. (16), we obtain

g∗ (s) =
∞∑
j=1

αjβj
αj + s

=
∞∑
j=1

βj

∞∑
k=1

(−1)kα−k
j sk =

∞∑
k=1

(−1)ksk

 ∞∑
j=1

α−k
j βj

 (23)

By comparison of Eqs. (22) and (23), we obtain relations between the βj and the ak for
a given series of rates αj10

ak =

 ∞∑
j=1

α−k
j βj

 (24)

The latter expression can be inverted (numerically) in order to obtain explicit expres-
sions for the weights βj and thus for the memory function g(t) that simulates the trans-
port behavior in a CTRW.

Dentz and Berkowitz (2003) also proposed the use of the truncated power law mem-15

ory function, which has become widely used because breakthrough curves often dis-
play a power law behavior at late times (see, e.g., Zhang et al., 2007; Willmann et al.,
2008). The late time behavior of the breakthrough curve can be related to the memory
function (Haggerty et al., 2000). This memory function only requires specifying the
slope of the memory function in log-log scale, mg, and the interval of time (t1, tN ) on20

which this function displays a power-law behavior. A practical method to calculate the
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distribution coefficients βj consists of, first, calculate the αj values assuming they are

evenly distributed on a logarithmic scale while fixing α1=t
−1
N and αN=t

−1
1 . Secondly,

we obtain a recursive relationship for βj values by approximating the memory function
with expressions of successive increasing orders, i.e.

log

 N∑
i=j

βiαi

 − log

 N∑
i=j+1

βiαi

 = mg(log tj − log tj+1) (25)5

where tj=α
−1
j . This leads to

βj =

N∑
i=j+1

βiαi

αj

[( αj
αj+1

)mg

− 1
]

j = 1 . . . N − 1 (26)

To get the values of βj , we first assign an arbitrary value to βN (e.g., βN=1). Then we

apply Eq. (26) and finally scale these values imposing the condition
N∑
j=1
βj=1.

5 Numerical implementation10

5.1 Module structure, main attributes and subroutines

The equations described in the previous sections have been implemented in a Fortran
90 module called mod process MRMT.f90 , which is structured following the coding
guidelines and rules proposed by Slooten et al. (2008). The module defines MRMT
objects by means of type t immobile and provides services to solve the equation15

described here. The main attributes of the module contained in the type t immobile
are detailed in Fig. 2. The main services of mod process MRMT.f90 are described in
Table 1. Auxiliary subroutines, private arguments and attributes are commented within
mod process MRMT.f90 .
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5.2 Input files

Input data of mod process MRMT.f90 are entered in XML format. Reading of input
files is achieved by the use of the modules flib sax.f90 and flib xpath.f90 .
These modules were obtained from Garcı́a (2004) and basically are libraries to handle
the reading of xml files. These libraries depends on other Fortran modules, which5

are stored in folders xmlreader and xpath , respectively. Based on the mathematical
equivalence of the different approaches explained in Sect. 4, four types of input files are
available: Parameters.xml , Coefficients.xml , ExpansionSeries.xml , and
PowerLaw.xml .

5.3 Embedding mod process MRMT.f90 into a standard numerical code10

The structure and arguments of mod process MRMT.f90 were designed so that state
variables and parameters characterizing the immobile domain are only accessible from
the module. This guarantees a minimal information exchange with the program units of
any host code to which the user would hope to link mod process MRMT.f90 . That fea-
ture helps to get a straightforward implementation of the present MRMT approach on15

a general advection-dispersion transport simulator programmed in Fortran, as shown
in Fig. 3. We assume that the user (programmer) has got any standard numerical code
for flow and solute transport that will be modified to include the multi-rate mass transfer
equations described in Sects. 2 and 3, according to the following steps:

– Add the file mod process MRMT.f90 and folders xmlreader and xpath con-20

taining all the XMLsupporting material into the source files of the host code. Also
copy the XMLinput file to the work directory, depending on the user’s application
and options given in Sect. 5.2.

– Include the “Use mod process MRMT” statement into the source code and de-
clare as many variables of type t immobile as required by the user’s application.25

We suggest an optional declaration because the user might want to use logical
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variables indicating whether MRMT is or not included in the simulations. There-
fore, any variable declared as t immobile that could be an argument of host
code subroutines will be properly passed whether they are or not present. To cre-
ate these variables, immediately after declaration in the main transport code in-
clude as many callings to the Create subroutine as t immobile variables have5

been declared. Initialization also requires reading input files in the corresponding
section of the standard transport code, so include a calling to the Read XML
subroutine to read the mass-transfer parameters of each immobile zone. After ini-
tialization in the host code one has to initialize all variables of type t immobile ,
by calling the subroutine Initialize .10

– After calling the host code subroutines, modules or program units that construct
the system matrices A, D and b (Eq. 8), one has to modify D and b according
to Eqs. (11a and 11b). This action is shown in Fig. 3 for the case of including
MRMT into the solute transport problem. The subroutine ContriToMatrices
calculates de contribution of MRMT to D according to Eq. (11a). For each vari-15

able declared as t immobile , the user has to include a calling statements to
ContriToMatrices and ContriToSink subroutines. The user will need to
add the corrections due to MRMT. For instance

DO I=1,NUMNP
D(I) = D(I) + Dcorr(I)20

B(I) = B(I) + Bcorr(I)
END DO

where D and B would be arrays storing the matrices elements of system (8),
Dcorr and Bcorr arrays storing the corrections given by Eqs. (11a and 11b),
and NUMNPan integer variable representing the number of mobile nodes. Note25

that subroutines ContriToMatrices and ContriToSink must be called at
every time step. They can be called within the subroutines that form matrices D
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and b or after them, following the structure of the host code and user’s prefer-
ences, but before execution of the unit program that solve the system of Eqs. (8).

– After solving a time step of the transport problem (Fig. 3), the state variable of
the immobile domain, uim,j , must be updated according to Eq. (9). This is done
by calling the subroutine UpdateConc . If required, the total amount and the5

average value of u in the immobile domains can be computed calling subroutine
TotSolMass . Note that those quantities are saved within the internal structure
of the variable ImmbReg. However, they can be obtained by calling the subroutine
GetSolMass . Output subroutines are available to follow the evolution of the state
variable u at immobile regions (WriteConc ), as well as the total and average10

of u (WriteSolMass ). If required, these subroutines can be called within the
program unit for writing output results.

– Finally, it may be necessary and advisable to deallocate all the attributes of all
type t immobile variables used in the simulation. This can be achieved by
including a call to subroutine Destroy for each of these variables at the end of15

the transport simulation.

The module supports some characteristics of object-oriented programming. In fact, the
module was designed such that its types and operations are available from outside but
the details of the implementation are hidden from the user, i.e., the “black box” principle
(Gorelik, 2004). Moreover, the present module lies within the definition of objects be-20

longing to the “Process” class of the object-oriented framework tool PROOST (Slooten
et al., 2008). These functionalities would also permit to link other Fortran modules
or objects to the present module. For instance, reactive transport may be included
in both the mobile and immobile regions, by properly linking the object-oriented tool
CHEPROO (Bea et al., 2009) to both any conservative transport code and the module25

mod process MRMT.f90 .
mod process MRMT.f90 can be downloaded from http://www.h2ogeo.upc.es/

English/English/software.htm#Mod process MRMT.
2432



6 Applications

In order to assess the accuracy of the present approach, we embedded the module
into TRACONF (Carrera et al., 1993), a Fortran program for the simulation of water
flow and solute transport through porous media. The testing exercise is divided into
three parts. We first compare the present formulation with an analytical solution for5

delayed yield from storage (Boulton, 1955), to test its applicability to flow problem.
Next, we compare our approach with the integro-differential approach, simulating the
hypothetical radially convergent tracer test described by Alcolea et al. (2001). Finally,
we apply the present approach to solve two problems of radial flow to a pumping well
(Haggerty and Gorelick, 1995).10

6.1 Verification for a flow problem

Boulton (1955) developed an analytical solution for unsteady radial flow allowing de-
layed yield from storage. This problem can be described by Eq. (1) with N=1, as-
suming q=0. We model a hypothetical pumping test, considering a transmissivity of
T=0.01 m2/s, Sm=0.001 and Sim=0.1, and a pumping rate of 0.04πm3/s. Initial head15

equals zero. We compare our non-local in time approach with the Boulton’s solution
for three values of the rate coefficient α=2.5×10−6, 10−5 and 5×10−5 s−1. Boulton
(1955) referred to α as an empirical constant. We considered a mesh of 208 nodes
with a spacing size ∆r increasing geometrically with a factor of 1.08. The integration
scheme in time was semi-implicit with variable ∆t.20

Figure 4 displays the evolution of heads at a distance of R=51.6 m from the well. The
dimensionless time tD=T t/SmR

2 was used. We can see that the numerical solution
(solid line) obtained with the present approach matches the analytical solution (circles)
obtained by Boulton (1955). The figure shows clearly the influence of the rate coef-
ficient α on the system behavior. As α decreases, the system approaches the case25

in which there is no delayed yield. Again, as α increases the system behaves as it is
constituted only by one domain under a mobile storage dominated regime. This is ex-

2433

pected because for very large values of α, the water mass transfer between mobile and
immobile zones occurs nearly instantaneously: mobile and immobile domains tend to
be at equilibrium.

6.2 Verification for a transport problem

We model the convergent tracer test described by Alcolea et al. (2001). A tracer5

mass of 7.88 g is injected 8 m away from a well pumping 150 m3/d. The radius of the
pumping well and the aquifer thickness are 0.2 m and 5 m, respectively. Porosity of the
mobile domain is φm=0.1. The immobile zone consists of layers of length Lim=0.05 m
and porosity φim=0.045. The diffusion coefficient in the immobile zone was set to
Dim=0.001 m2/d. TRANSIN code uses the integro-differential approach to solve matrix10

diffusion problems. Accordingly, we have chosen the ExpansionSeries option of our
module, which used Eq. (13a and b) to define α’s and β’s with N=50. A uniform mesh
with a grid size ∆r=0.005 m (93 nodes) and a fully implicit integration scheme in time
was used in the simulations.

Figure 5 shows the breakthrough curves at the pumping well simulated with the15

present approach and with TRANSIN, which compare quite well. The maximum relative
error was 1%.

6.3 Verification for a field problem

Haggerty and Gorelick (1995) presented a case of radial flow to a pumping well, in the
context of PCE removal from the Borden sand aquifer under realistic pumping rates.20

To solve the governing equations, they expressed the MRMT model in dimensionless
form and used a semianalytic method. Here we only give the main characteristics con-
cerning with our approach, as the specifications of the problem are well described in
their work (Haggerty and Gorelick, 1995). Two hypothetical case studies were consid-
ered: the remediation of a homogeneous aquifer (Borden sand) and the remediation25

of a hypothetical heterogeneous aquifer with a mixture of mass transfer processes. In
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both cases we used a mesh of 102 nodes with a spacing size ∆r decreasing in such
a way that all cells have the same volume and ∆r1=1.39 m. The integration scheme in
time was semi-implicit with variable ∆t.

The first case study simulates the cleanup history of a homogeneous aquifer where
seven immobile zones are associated to a distribution of grain sizes. The grains are5

assumed to be spherical; the αj and βj coefficients are given in Table 2 of Haggerty
and Gorelick (1995). As in their work, we have considered 50 exponential terms to
adequately describe each immobile domain. Figure 6a displays the evolution of the
PCE mass fraction remaining through an scenario of 500 d. We can see that the nu-
merical solution (solid line) obtained with the present approach match very well the10

semi-analytical solution (dashed line) obtained by Haggerty and Gorelick (1995).
In the second numerical experiment, we simulate the removal of PCE from an het-

erogeneous aquifer. Here, heterogeneity arises from four immobile zones of different
geometry (porous grains, grain aggregates, clay layers and clay pods) and two immo-
bile zones characterized by a surface reaction (slow and fast reactions). The mass-15

transfer parameters are those appearing in Table 3 of Haggerty and Gorelick (1995).
Note that these parameters are assumed locally heterogeneous, but they have the
same distribution at all points in space. Once again, 50 terms were used to describe
each geometry and only a single term for each reaction. Figure 6b shows predictions
of the mass fraction of PCE remaining in the aquifer during a remediation scenario20

of 20 000 d. Again, the evolution of the mass fraction remaining obtained through the
present approach (solid line) fit well the results predicted by the semi-analytical solution
(dashed line). Therefore, the present model can reproduce the behavior of heteroge-
neous media characterized by different types and rates of mass transfer.

7 Conclusions25

We have developed an easy-to-use numerical implementation of multi-rate mass trans-
fer, which embeds existing formulations for MRMT. We developed a simple numerical
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method, which is physically consistent with and mathematically equivalent to other
formulations such as integro-differential formulation. The present approach avoids
the spatial discretization of the immobile domain, because it solves state variables
of that zone as explicit function of the state variables in the mobile domain. The
numerical method is accurate, as it involves an analytical solution for the mass bal-5

ance equations at immobile zones. We also have implemented the method into
a Fortran 90 module that can be easily embedded into standard numerical codes
for flow and solute transport to model multi-rate mass transfer. Portability of the
module has been achieved because of its object-oriented structure. The module
has been tested by comparison with published solutions and is publicly available at10

http://www.h2ogeo.upc.es/English/English/software.htm#Mod process MRMT.
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Table 1. Description of the main subroutines of mod process MRMT.f90 .

Subroutine Task description Arguments

Create It is a constructor function called at the beginning of the program. It nullifies
all the pointer parameters and sets all the other parameters to zero if they are
integer and real.

– this : type t immobile

Destroy Destructor function is called in the end as it deallocates all the pointers allo-
cated. – this : type t immobile

Read XML It reads immobile attributes from *.xml files. Checks if there is any error in
opening the XMLfile. The subroutine read xml loc is called twice. First,
without optional attribute, so it reads the parameters of the immobile zones
from the XML file. Later, when it is called with the optional attribute this ,
the parameters are allocated with space and values.

– this : type t immobile

– namefile : type character for input file name

Initialize Allocates the variables and takes the initial condition of the state variable in
the mobile region to set an initial condition in the immobile domain. This sub-
routine is called after reading values from the input XMLfile.

– this : type t immobile

– frac nodes : type integer for number of nodes in mobile region

– conc imm: real array with dimension frac nodes to set the ini-
tial condition of the state variable in the immobile region. This
attribute is an optional variable with zero default value.

ContriToMatrices Computes the contribution to the storage matrix D of the system Eq. (8) ac-
cording to Eq. (11a). This is one of the main computational subroutines and
should be called whenever there is a change in time step.

– this : type t immobile

– delt : type real for time step

– theta : type real for time integration factor

– contri stor : real array with dimension this%frac nodes
for contribution to storage matrix

ContriToSink Computes the contribution to the source/sink term b of equations system (8)
according to Eq. (11b). This subroutine should be called at every time step in
conjunction with ContriToMatrices in order to solve governing equations
with MRMT.

– this : type t immobile

– delt : type real for time step

– theta : type real for time integration factor

– prevConc mob: real array with dimension this%frac nodes
for the state variable in mobile domain at previous time step

– contri sink : real array with dimension this%frac nodes
for contribution to sink/source term

UpdateConc Updates state variable of immobile region according to Eq. (9). The subroutine
takes as arguments the current and previous time step values of the state
variable in mobile region. UpdateConc should be called only after calling the
contributions subroutines as they require previous time step state variables.

– this : type t immobile

– delt : type real for time step

– theta : type real for time integration factor

– prevConc mob: real array with dimension this%frac nodes
for the state variable in mobile domain at previous time step

– CurrConc mob: real array with dimension this%frac nodes
for the state variable in mobile domain at the end of the current
time step
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Table 1. Continued.

Subroutine Task description Arguments

TotSolMass Computes the total amount of a state variable u (e.g., total mass of solute) in
all the immobile zones for a particular mobile node, the total amount and the
average value of u in the immobile region.

– this : type t immobile

WriteConc Writes the state variable (e.g., concentration) in the immobile region in a DAT
file. – this : type t immobile

– time : type real for time at which the state variable is stored

– fileID : type integer and optional . If present, output file
will be a unit number; if not present output will be written to file
conc imm.out

WriteSolMass Writes the values of solute mass in a separate DAToutput file.

– this : type t immobile

– time : type real indicating the time at which results are stored

– fileID : type integer and optional . If present, output file
will be a unit number; if not present output will be written to file
Sol mass.out

GetSolMass Get the values of total mass of solute and the average concentration in the
immobile zones – this : type t immobile

– tomasim : real array with dimension this%frac nodes return-
ing the total amount of u in the immobile domain

– avcon : real array with dimension this%frac nodes returning
an average value of the state variable in the immobile domain
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Discretization of the mobile domain

m

im,N-1

im,N

im, j

im,1

im,2

…
…

immobile blocks

Fig. 1. Hypothetical numerical discretization of the mobile and immobile domains.
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35 

 

type, public:: t_immobile

private

character(len=100):: name !Descriptor of the immobile region

integer:: nimz !Number of types of immobile zones

integer:: nimztot !Total number of immobile zones

integer:: frac_nodes !Number of nodes in the mobile region

double precision, pointer:: por(:)        !Porosity of the immobile region (Eqs. 3 and 4)

double precision, pointer:: vol_aqui(:)   !Volume of each cell of the mesh used to solve the mobile region 

(Eq. 11)

double precision:: vol_mob !Parameter for volume of aquifer

double precision, pointer:: len_imm(:)    !Average size of matrix blocks or characteristic length of immobile 

region (Eqs. 2 and 4)

double precision, pointer:: diff(:)       !Diffusion or conductivity coefficient in the immobile zones

(Eqs. 2 and 4)

double precision, pointer:: rtd_fac(:)    !Retardation factor (Eqs. 3 and 4)

double precision, pointer:: conc_mat(:,:) !Concentration in the immobile region with dimension one representing 

nº of immobile zones and two representing nº of mobile nodes, in 

case of solute transport. Pressure head in the immobile region for 

flow equation.

double precision, pointer:: totmass_imm(:)!Total "mass" in the immobile region at the mobile nodes

double precision, pointer:: avg_conc(:)   !Average "concentration" in the immobile zone at the mobile nodes

double precision, pointer:: alpha(:)      !First-order rate coefficients appearing in Eq. (6)

double precision, pointer:: betha(:)      !Capacity coefficients of immobile phases appearing in Eq. (5)

double precision, pointer:: alphaset(:)   !To store all alpha coefficients in the Expansion Series and Power 

Law options (e.g., Eq. 14a)

double precision, pointer:: alphabetha(:) !Product of alpha and betha coefficients (Eqs. 7a, 11b, 16)

character(len=100), pointer:: geometry(:) !Geometry or name of the process in the immobile regions

integer, pointer:: nexpterms(:) !Number of expansion terms in integro-differential, memory function 

and CTRW formulations (Eqs. 18-26)

double precision:: mg !Slope of the memory function for power-law behavior (Eqs. 25 and 26)

double precision:: taui !Initial time of power-law behavior (Eqs. 25 and 26)

double precision:: tauf !Final time of power-law behavior (Eqs. 25 and 26)

character(len=100):: namemodel !In the power law approach, namemodel = WCSV for Willman et al. 

(2008) method, namemodel = SCK for the present method (Eq. 26).

end type t_immobile

Figure 2
 

Fig. 2. Definition of the data type t immobile .
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Fig. 3. Linking mod process MRMT.f90 to a conventional numerical code for flow and trans-
port.
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Fig. 4. Comparison between the present approach and an analytic solution (Boulton, 1955) for
delayed yield from storage.

2447

38 

 

 

 

 

 

 

 

Time, d

0 1 2 3 4

C
o

n
c
e

n
tr

a
ti
o
n

, 
g

/l

0.00

0.01

0.02

0.03

0.04

0.05

0.06

TRANSIN

present approach

Figure 5
 

 

 

 

 

Fig. 5. Verification test with TRANSIN code. Breakthrough curve of tracer in a radial convergent
test.
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Fig. 6. Comparison between the present approach and a semi-analytic solution (Haggerty and
Gorelick, 1995). (a) Homogeneous aquifer. (b) Mixture of mass transfer processes (heteroge-
neous aquifer).
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