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[1] We present novel equations for the exact sensitivity matrix of the (ensemble) mean
hydraulic head under steady state groundwater flow conditions. These equations are
embedded in a geostatistical inverse procedure to condition approximations of stochastic
moment equations of flow on measured hydraulic conductivities and heads. Our
formulation allows considerable improvement of the methodology proposed by Hernandez
et al. (2003, 2006) and renders the inversion of moment equations feasible for a large
number of unknown hydraulic parameters. The spatial distribution of the natural logarithm,
Y, of conductivity is parameterized within the pilot points framework. Whereas prior
values of Y at pilot points are obtained by a variant of kriging, posterior estimates at
pilot points are obtained through a maximum likelihood fit of computed to measured
heads. The maximum likelihood function also includes a regularization term. By means of
a synthetic example and upon adopting formal model information criteria we explore the
influence of (1) the number of pilot points and (2) the order of approximation of the
governing mean flow equation on our ability to properly estimate the log conductivity and
head fields and identify the relative weight of the regularization term and the parameters of
the underlying Y variogram. We find that none of the adopted information criteria can
identify the optimum number of pilot points and the plausibility weight and variogram
parameters values can be determined by the Kashyap’s Bayesian measure.
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1. Introduction

[2] Predictions of groundwater flow in porous media
are typically affected by different sources of uncertainty,
including, for example, measurement and parameter un-
certainties. These, together with uncertainties in forcing
terms, are conveniently tackled upon casting the governing
equations in a stochastic framework [e.g., Dagan and
Neuman, 1997]. In this context, different methods have
been developed to condition hydrogeological models not only
on direct measurements of parameters but also on measure-
ments of state variables. Linearized stochastic inverse solu-
tions based on cokriging were developed for steady state flow
[Dagan, 1985; Hoeksema and Kitanidis, 1984; Gutjahr and
Wilson, 1989; Rubin and Dagan, 1987]. As demonstrated

by Zimmerman et al. [1998], these methods yield reliable
parameter estimates for moderate spatial variability but rela-
tively poor estimates and unduly small estimation variances
when variability or nonlinearity is pronounced. Woodbury
and Ulrych [2000] introduced a linearized Bayesian geosta-
tistical inverse approach coupled with a maximum entropy
principle that resolves log transmissivity variations on a finite
element grid, resulting in improved ability to deal with
strongly heterogeneous media [Jiang et al., 2004]. An alter-
native methodology is offered by Monte Carlo approaches
[e.g., Sahuquillo et al., 1992; LaVenue et al., 1995; RamaRao
et al., 1995; Capilla et al., 1997; Gómez‐Hernández et al.,
1997; Oliver et al., 1997; Hanna and Yeh, 1998; Hendricks
Franssen and Gómez‐Hernández, 2002; Alcolea et al.,
2006b]. These require the generation of a (potentially) large
set of random inverse solutions that honor measurements.
This may consume a large amount of computer time. Applying
them to only a few realizations, as has been the practice to
date, may yield plausible representations of reality which
however are random and therefore nonunique.
[3] Recently, Hernandez et al. [2003, 2006] formulated a

nonlinear methodology for the inversion of steady state
(ensemble) moment equations of groundwater flow. Log
conductivity, Y, is parameterized geostatistically from mea-
sured values at discrete locations and unknown values at
discrete “pilot points” [de Marsily, 1978]. Whereas prior
values of Y at pilot points are obtained by a variant of kriging,
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posterior estimates at pilot points are obtained through a
maximum likelihood fit of computed to measured heads.
Optionally, the maximum likelihood function may include a
regularization term reflecting prior information on Y; that
is, prior measurements/estimates of parameters and associ-
ated errors/uncertainties. Additionally, this term helps to
alleviate instability problems due to overparameterization
[Tikhonov, 1963a, 1963b; Neuman, 1973; Carrera and
Neuman, 1986a; Cooley, 2000; Medina and Carrera, 2003;
Alcolea et al., 2006a]. The approach of Hernandez et al.
[2003, 2006] provides predictions of hydraulic head and
flux through their conditional first moments. Their compu-
tational algorithm is based on the recursive finite element
approximations of conditional mean flow equations of
Guadagnini and Neuman [1999a] and allows rendering
either a zero‐ or a second‐order approximation of the mean
flow equation (in terms of the standard deviation of Y, sY).
Variances of hydraulic head (and flux) are then calculated
a posteriori upon solving the corresponding equations.
Recently, Hendricks Franssen et al. [2009] compared the
relative performance of this moment equations–based inverse
method and several types of Monte Carlo and semianalytical
inverse methodologies. The methods were assessed in terms
of their ability to characterize the log conductivity and head
fields and to predict the extent of a well catchment, for mildly
and strongly heterogeneous synthetic Y fields. The main
conclusions were that observed differences between the per-
formances of the tested methods were not very large. Yet,
Monte Carlo inversion of 500 realizations of the particular
setup considered needed considerably more CPU time than
geostatistical inversion of moment equations.
[4] In spite of the aforementioned advantages, the inver-

sion of moment equations is still based on an optimization
process which requires the numerical calculation of the
derivatives of the objective function with respect to model
parameters. These are calculated from the corresponding
derivatives of nodal heads (i.e., the sensitivity matrix). This
currently limits the applicability of the method to situations
where the number of parameters (e.g., Y values at pilot
points) is not large because of the relevant computational
cost for calculating the sensitivity matrix at each iteration
along the optimization process. We recall that pilot points
are introduced to parameterize the underlying Y field by
means of a kriging analog. In general, the quality of the fit
between calculated and measured heads tends to increase
with the number of adjustable parameters (i.e., pilot points).
However, the number of parameters can become so large to
allow fitting the model to noise, thus causing the quality of
the parameter estimates to start deteriorating [Neuman,
1973]. In the context of studies based on the inversion of
traditional deterministic flow equations [e.g., de Marsily et al.,
1984; RamaRao et al., 1995; Gómez‐Hernández et al., 1997;
LaVenue and de Marsily, 2001], experience has suggested to
locate pilot points on a pseudoregular grid, with spacing of
the order of two to three pilot points per correlation range.
Using this rule of thumb in practical applications might lead
to a very large number of pilot points, with the risk of
overfitting [Christensen and Doherty, 2008]. Alcolea et al.
[2006a] suggest instead using a minimum of four‐five pilot
points per correlation range in the context of the Regularized
Pilot Points Method. A comprehensive analysis of the effect
of the number of pilot points and of the plausibility weight

on the performance of the inversion of groundwater flow
moment equations has never been performed.
[5] Here, we start by deriving the equations satisfied by

the sensitivity matrix of the (ensemble) mean hydraulic head,
up to its second‐order approximation. This allows rendering
the nonlinear inversion of stochastic moment equations fea-
sible for a large number of unknown parameters. We then
explore, on the basis of a synthetic example, the influence of
(1) the order of approximation (zero‐ or second‐order) of the
governing mean flow equation and (2) the number of pilot
points on our ability to properly reconstruct the log conduc-
tivity field and to identify the statistical parameters of the
underlying variogram of Y, the plausibility weight and the
uncertainty associated with the available measurements.
Estimation of statistical parameters characterizing the geos-
tatistical model defining the spatial variability of the system
is performed on the basis of formal model information/
discrimination criteria.

2. Theoretical Background

[6] We consider steady state flow in a randomly hetero-
geneous porous medium. Guadagnini and Neuman [1999a,
1999b] show how to calculate optimum unbiased predictions
of hydraulic head, h(x), via its first statistical moment (the
ensemble mean), hh(x)ic, eventually conditioned on mea-
surements of hydraulic conductivity, K(x). The predictor,
hh(x)ic, and its associated prediction variance, sh2 (x), satisfy
exact nonlocal integrodifferential equations [Neuman and
Orr, 1993]. Guadagnini and Neuman [1999a] render these
nonlocal equations workable upon approximating them
recursively through expansion in powers of sY, a measure of
the (conditional) standard deviation of (natural) log conduc-
tivity, Y(x) = ln K(x), and develop recursive computational
algorithms to solve these equations by Galerkin finite ele-
ments up to second order in sY in the presence of measured
values of Y. It has then been shown that, when compared to
numerical Monte Carlo simulations, second‐order approx-
imations of the moment equations yield highly accurate
(numerical and/or analytical) solutions for groundwater flows
in heterogeneous media with unconditional variance of Y as
large as 4 and different ratios between a characteristic length
scale characterizing the geometry of the domain and the
correlation scale of the Y field [e.g.,Guadagnini and Neuman,
1999a; Riva et al., 2001; Guadagnini et al., 2003]. We report
in Appendix A the finite element equations ofGuadagnini and
Neuman [1999a] in the presence of deterministic sources and
boundary conditions. These constitute the starting point for
the development of the exact sensitivity matrix presented
in section 4. We have embedded the inversion of the flow
moment equations by means of the evaluation of the exact
sensitivity matrix in a new numerical code (inverse moment
equations (INME)), which extends the earlier code of
Guadagnini and Neuman [1999b] by also handling irregular
domain shapes, rectangular and triangular elements, and
general deterministic boundary conditions.
[7] As shown in Appendix A, the solution of the zero‐

and second‐order approximations of the mean flow equa-
tions and its associated (co)variance requires the knowledge
of (1) the mean geometric hydraulic conductivity, KG(x) =
exp(hY(x)ic), and (2) the conditional covariance of the Y
field, CYc(x, y) = hY′(x) Y′(y)ic, between points x and y.
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Hernandez et al. [2003, 2006] developed a nonlinear geos-
tatistical inverse procedure on the basis of a maximum like-
lihood approach (ML) to condition hY(x)ic and CYc(x, y) on
measured values of Y and h. Estimation of hY(x)ic is performed
upon parameterizing it as a weighted sum of NM values YMi(xi)
at discrete measurement points xi (i = 1,…, NM), if available,
and NP values YPj(xj) (j = 1,…, Np) at discrete pilot point
locations [de Marsily, 1978; de Marsily et al., 1984].

Y xð Þh ic¼
XNM

i¼1

�i xð ÞYMi xið Þ þ
XNP

j¼1

�j xð ÞYPj xj
� � ¼ XNY

k¼1

�k xð ÞYHk xkð Þ

ð1Þ

Here,NY =NM +Np,li(x) and lj(x) (and so lk(x)) are ordinary
kriging weights to be determined, YHk is the k component of
the vector of hydraulic parameters YH = (YM, YP)

T, YM and
YP being vectors formed by values of YMi and YPj, respec-
tively. The values of YMi(xi) and YPj(xj) (the first optionally if
measurements of Y affected by errors are available) are esti-
mated by inversion in a ML framework (see below for de-
tails). Pilot points are introduced to parameterize hY(x)ic by
means of a kriging analog. The identification of the optimum
number of pilot points is an important task of this investiga-
tion. We assume that Y(x) has statistically homogeneous
spatial increments or fluctuations about a spatial drift of
known form (e.g., polynomial, logarithmic, or based on
surrogate data such as rock/soil type or petrophysical/
pedological characteristics) but unknown coefficients. In
either case, the spatial structure of Y(x) is characterized by a
variogram function g(s; q) where s is a lag vector and q a
vector of variogram parameters. Here, we consider a single
(i.e., nonnested) variogram structure characterized by sill
(sY

2) and integral scale (IY). Yet, more sophisticated vario-
grams including, for example, anisotropy, can be accom-
modated in the approach. If there is a sufficiently large
number of reliable measurements of Y, � can be estimated
directly from these data [e.g., Samper and Neuman, 1989a,
1989b]. Here, we explore the possibility of estimating q
within the context of the optimization process by means
of suitable model information/discrimination criteria to
render it fully conditional on available measurements [e.g.,
Hernandez et al., 2006, and references therein]. Having an
estimate of q, a prior estimate of Y at pilot points together
with the corresponding prior estimation variance‐covariance
can be obtained by standard methods (e.g., variants of kriging;
see Deutsch and Journel [1998]). Estimation of Y at mea-
surement and pilot point locations during inversion is based
on NM measurements of Y and Nh measurements of h.
[8] We set

Y*Mi ¼ YMi þ "*Yi i ¼ 1; :::;NM ð2Þ

h*j ¼ hj þ "*hj j ¼ 1; :::;Nh ð3Þ

where YMi and hj are the unknown true values of Y and h at
measurement points xi and xj, respectively, Y*Mi and h*j
their measured values and "*Yi and "*hj are zero‐mean
uncorrelated measurement errors. Following the work of
Carrera and Neuman [1986a], we assume that the mea-
surement errors of Y and h (1) lack correlation and (2) are

multivariate Gaussian. In addition, the covariance matrices
of measurements errors, Ch for heads and CYM for log
conductivity,

Ch ¼ �2
hEVh; CYM ¼ �2

YEVYM ð4Þ

are unknown up to the positive scalars shE
2 and sYE

2 (these
quantities are typically unknown and can be estimated
during inversion, as detailed in what follows) and "*Yi and
"*hj are not correlated in space (it then follows that the
matrices Vh and VYM are diagonal). Note that VYM reflects
measurement uncertainties of Y only (i.e., it does not
include any source of parameter uncertainty).
[9] The ML estimate of hY(x)ic is obtained by minimizing

the following function (negative log likelihood criterion;
see Carrera and Neuman [1986a]) with respect to model
parameters

NLL ¼ Fh

�2
hE

þ FY

�2
YE

þ ln VYj j þ ln Vhj j

þ Nh ln�2
hE þ NY ln�2

YE þ Nz ln 2� ð5Þ

Here, Nz is the total number of measurements (Nz = Nh + NY)
and the covariance matrix of the vector of measurement
errors, e*Y, is written as

CY ¼ CYM 0
0 CYP

� �
¼ �2

YEVY ¼ �2
YE

VYM 0
0 VYP

� �
ð6Þ

where CY is formed by the diagonal covariance matrix of Y
measurements errors, CYM, and the nondiagonal symmetric
covariance matrix of Y estimation errors at pilot points,CYP =
sYE
2 VYP. Whereas Vh and VYM are fixed, VYP is a function of

the variogram parameters q. As such, VYP is updated during
the inversion process. Note that full correlation is included
during the inverse process. As a result, the variance of pilot
points located close to measurement points will be small. The
quantity Fh in (5) is the head residual criterion (also termed
objective function of heads)

Fh ¼ h* � h a½ �
D E

c

� �T
V�1

h h* � h a½ �
D E

c

� �
ð7Þ

where superscript T denotes transpose, h* is the vector of
head measurements, hh[a]ic is a vector of a‐order mean con-
ditional hydraulic head values (i.e., a = 0 or 2, depending on
the order of approximation of hhic) evaluated according to
equations (A1)–(A7) at headmeasurement locations.FY is the
penalty parameter criterion (also termed objective function of
parameters)

FY ¼ Y* � Yh ic
� �T

V�1
Y Y* � Yh ic
� �

ð8Þ

where Y* is the vector of Y measurements and Y prior
estimates at pilot point locations, hYic is a vector of mean
Y values evaluated during inversion (performed at order a)
at Y measurement and pilot point locations. Calculating
hh[a]ic at each iteration during the optimization process
entails having at our disposal the current estimates of hY(x)ic
(for a = 0), hY ′2(x)ic and hY ′(x) Y ′(y)ic (for a = 2). This is
achieved by estimating Y at measurements and pilot point
locations through minimization of (5) and projecting these
estimates on the computational grid by posterior kriging.

RIVA ET AL.: SENSITIVITY MATRIX FOR INVERSION W11513W11513

3 of 15



Following Guadagnini and Neuman [1999a], we treat mean
log conductivity as constant at each element and approximate
the covariance hY′(x) Y′(y)ic between any point x in element
e and y in element e′ by hY′(xe)Y′(ye′)ic ≡ hY′(e)Y′(e′)ic, where
xe and ye′ are the centroids of elements e and e′ (see Appendix
A for details). Hernandez et al. [2006] derived the following
equation for the posterior covariance of Y (solved at each
iteration of the optimization process)

Y
0
xð ÞY 0

yð Þ
D E

c
¼ Y xð Þ � Y xð Þh ic

� 	
Y yð Þ � Y yð Þh ic
� 	
 �

c

¼ Y xð Þ �
XNY

k¼1

�k xð ÞYHk
" #

Y yð Þ �
XNY

i¼1

�i yð ÞYHi
" #* +

c

¼ �� x� y; qð Þ �
XNY

k¼1

�k xð Þ
XNY

i¼1

�i yð Þ � xk � xi; qð Þ � Qki½ �

þ
XNY

i¼1

�i xð Þ � x� xi; qð Þ þ
XNY

i¼1

�i yð Þ � y� xi; qð Þ ð9Þ

Here, Qki are components of the parameter estimation
covariance matrix Q ≡ h(Y − hYHic) (Y − hYHic)Ti. The
posterior variance of Y is obtained by (9) upon setting x = y.

3. Optimization Procedure and Role of Model
Discrimination Criteria

[10] Minimization of (5) with respect to YHj
(with j = 1,

…, NY), shE
2 , sYE

2 and variogram parameters (included in
vector q) is not a trivial task and might lead to unstable
results [Carrera and Neuman, 1986a, 1986b]. We follow
Carrera and Neuman [1986a, 1986c] and Hernandez et al.
[2006] and minimize (5) with respect to YH for selected
values of q, shE2 and sYE

2 . We then improve upon these
values as described below and repeat the process iteratively
until convergence is attained. When q, shE2 and sYE

2 are set,
minimization of (5) reduces to the minimization of

F ¼ Fh þ �FY ð10Þ
where m is the plausibility weight

� ¼ �2
hE

�2
YE

ð11Þ

For given q and m we minimize (10) using the iterative
Levenberg‐Marquardt algorithm, which we implement
within the code INME. The minimization algorithm com-
putes an updated parameter estimate ŶH of the (unknown)
true vector Y and a Cramer‐Rao lower bound approximation
for the covariance matrix of the corresponding estimation
errors. The latter is evaluated according toQ = shE

2 [JTVh
−1J +

m VY
−1]−1 where J is the Jacobian matrix of (ensemble mean)

head derivatives with respect toY, evaluated at ŶH. Next, ŶH

is projected onto the finite element grid via the posterior
kriging algorithm described above. This allows solving the
finite element equations for updated conditional mean head
values, providing the next iteration with starting data. The
iterative process continues until one of the following criteria
is met: (1) the gradient norm is very small (krFk ≤ 10−5),
(2) the ratio between the gradient norm and its value at the first
iteration is small enough (krFk/krFk1 ≤ 10−5) or (3) the
maximum increment of parameters between two consecutive

iterations is very small (<10−4).The second condition is
usually considered the best criterion of convergence [e.g.,
Carrera and Neuman, 1986c; Alcolea et al., 2006a]. Fol-
lowing convergence of the minimization process, estimates of
Y(x), rendered by (1) at elements centroids, and corresponding
variance‐covariance computed according to (9) are fully
conditioned on all available data (log conductivity and/or
heads). The results depend on the order (zero‐ or second‐
order) of approximation adopted for the (mean) flow equa-
tion. This will be further explored in section 5.
[11] We note that, while the analysis of Hernandez et al.

[2006] was limited to a fixed and known value of the
plausibility weight (m = 1), minimization of (10) should be
performed for a sequence of m and q values. Carrera and
Neuman [1986a] suggest that, when m is unknown, the
optimum value of m should be the one leading to a minimum
value of NLL in (5). In section 5 we explore the ability of
NLL and the following model information/discrimination
criteria

AIC ¼ NLLþ 2NY ; AICc ¼ AIC þ 2NY NY þ 2ð Þ
Nh � 1

;

BIC ¼ NLLþ NY lnNZ ; HIC ¼ NLLþ 2NY ln lnNZð Þ;

KIC ¼ NLLþ NY ln
NZ

2�

� 

� ln Qj j ð12Þ

to identify the optimum value of m in the context of inversion
of mean groundwater flow at different orders of approxima-
tion. In (12), AIC is due to Akaike [1974], BIC to Schwarz
[1978], HIC to Hannan [1980], KIC to Kashyap [1982] and
AICc is presented by Hurvich and Tsai [1989].
[12] We follow this by ML estimate of shE

2 and sYE
2

according to [Carrera and Neuman, 1986a]

�2
hE ¼ Fmin

Nz
;�2

YE ¼ �2
hE

�
ð13Þ

where Fmin is the value of F (10) at the end of the opti-
mization procedure. We repeat the evaluation of m, shE

2 and
sYE
2 for a sequence of discrete values of q, interpreting

each as representative of a different model, depicting a
different heterogeneous spatial distribution of log conduc-
tivity, along the lines of Hernandez et al. [2006]. We
select an optimum value of q on the basis of how sharply
it corresponds to a minimum of any of the selected model
information criteria.
[13] Model discrimination criteria can be used a posteriori

(after inversion) in order to propose a selection among a set
of candidate models. In principle, one could use such criteria
to select the number of hydraulic parameters to be estimated
during inversion (e.g., the optimum number of pilot points),
the order of approximation (zero‐ or second‐order) adopted
for the equation governing the mean groundwater flow, and
the functional form of the log conductivity variogram. All
these discrimination criteria support the principle of parsi-
mony, in that, when everything else is equal, the model with
the smallest number of parameters is preferable. If the
number of parameters and observation data is fixed, mini-
mization of any of the quantities in (12), with the only
exception of KIC, is equivalent to minimizing NLL. KIC is
the only discrimination criterion that, by means of ∣Q∣,
balances parsimony with the expected information content.
In other words, KIC is unique to favor models with smaller
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expected information content per observation [see also Ye
et al., 2008].

4. Derivation of the Sensitivity Matrix
for Mean Heads

[14] As stated in section 3, we minimize (10) using the
iterative Levenberg‐Marquardt’s algorithm. This second‐
order optimization method belongs to the Gauss‐Newton
family and often requires a small number of iterations to
converge [Marquardt, 1963; Nowak and Cirpka, 2004;
Carrera et al., 2005]. However, it requires the evaluation of
the sensitivity matrix; that is, the derivatives of heads at
nodal points with respect to model parameters. These deri-
vatives can be calculated in several ways. A common pro-
cedure consists in approximating the derivatives by the
incremental ratio (finite differences approximation). This
methodology is adopted in widely used external optimiza-
tion packages (e.g., PEST; see Doherty [2002]). It allows
evaluating the derivatives using model‐generated observa-
tions calculated on the basis of incrementally varied param-
eter values. Then, it involves the solution of the forward
problem as many times as (or twice) the number of the
parameters when a forward (or a central) finite difference
scheme is adopted to approximate the derivatives. Yet, the
simplicity comes at the cost of large CPU times. A finite
difference scheme becomes computationally demanding as
the number of parameters increases and limits the degrees of
freedom for reproducing the variability of hydraulic proper-
ties. In the context of groundwater flow moment equations,
Hernandez et al. [2003, 2006] approximate the derivatives of
heads with respect to model parameters by the central finite
differences method to obtain an adequate solution of the
inverse problem. As such, their procedure becomes compu-
tationally not appealing for a large number of parameters
(NY). As an alternative, one can directly solve the system of
equations governing the derivatives. This methodology has
not been developed until now, owing to the formal com-
plexity of the moment equations. Its key advantages are: (1) it
provides the exact solution for the derivatives, thus increasing
the accuracy of the inversion procedure; (2) the equations to
be solved are NY (and not 2 NY as in the central finite differ-
ences scheme); and (3) the system matrices are identical for
all the parameters and coincide with those used to solve the
forward problem (see sections 4.1 and 4.2), thus ultimately
leading to a drastic reduction of the total CPU time.
[15] The derivative of the second‐order approximation of

the mean conditional head, hh[2]ic, with respect to the jth
hydraulic parameter YHj

(j = 1,…, NY) is given by

@ h 2½ �
 �
c

@YHj

¼ @ h 0ð Þ
 �
c

@YHj

þ @ h 2ð Þ
 �
c

@YHj

ð14Þ

hh(0)ic and hh(2)ic being the zero‐ and second‐order compo-
nent of mean hydraulic heads, respectively. In sections 4.1
and 4.2 we develop novel equations satisfied by the terms
included in (14). These equations have been implemented in
the code INME.

4.1. Zero‐Order Component

[16] The zero‐order component of the hydraulic head in
(14) coincides with the solution of the traditional deter-
ministic flow equation in an aquifer with local hydraulic

conductivity equal to the mean geometric hydraulic con-
ductivity, KG(x). This can clearly be seen from (A1) (see also
Neuman andGuadagnini [1999] for an extensive discussion).
If the mean forcing term is not a function of YHj

(as is often
the case), derivation of (A1) with respect to YHj

leads to

XN
m¼1

Anm
@hm 0ð Þ

@YHj

¼ �
XN
m¼1

@Anm

@YHj

hm
0ð Þ; n ¼ 1; . . . :;N ð15Þ

where hm
(0) ≡ hh(0) (xm)ic is the zero‐order approximation of

the mean hydraulic head at grid node m, N is the number of
nodes defining the finite element mesh, excluding those at
Dirichlet boundaries, and Anm are terms of a sparse symmetric
matrix given by (A2). The derivative of Anm with respect to
YHj

can be obtained from (A2) as

@Anm

@YHj

¼
Z
W

exp Y xð Þh ic
@ Y xð Þh ic
@YHj

ryn � rymdx ð16Þ

Here, W is the flow domain, yn and ym being basis functions
(see Appendix A for further details). Derivation of (1) with
respect to YHj

leads to

@ Y xð Þh ic
@YHj

¼ �j xð Þ ð17Þ

Then, making use of (16) and (17), (15) becomes

XN
m¼1

Anm
@hm 0ð Þ

@YHj

¼ �
XN
m¼1

hm
0ð Þ
Z
W

exp Y xð Þh ic�j xð Þryn

� rymdx; n ¼ 1; . . . :;N ð18Þ

Note that all the terms required to evaluate ∂hm(0)/∂YHj
are

calculated during the forward solution of the equation satis-
fied by hhm(0)ic.

4.2. Second‐Order Component

[17] Derivation of (A3) with respect to YHj
leads to

XN
m¼1

Anm
@h 2ð Þ

m

@YHj

¼ @Pn

@YHj

þ @Sn
@YHj

�
XN
m¼1

h 2ð Þ
m

@Anm

@YHj

�
XN
m¼1

h 0ð Þ
m

@Bnm

@YHj

�
XN
m¼1

Bnm
@h 0ð Þ

m

@YHj

; n ¼ 1; . . . :N ;

ð19Þ

where hm
(2) ≡ hh(2)(xm)ic is the second‐order component of

the mean hydraulic head at grid node m and all remaining
symbols are introduced in Appendix A. We start by noting
that the posterior covariance of Y defined by (9) does not
depend on YHj

. This follows by noting that deriving (9) with
respect to YHj

and recalling the unbiased condition yields

@

@YHj

Y
0
xð ÞY 0

yð Þ
D E

¼ ��j xð Þ Y yð Þh i �
XNY

i¼1

�i yð Þ YHih i
" #

� �j yð Þ Y xð Þh i �
XNY

k¼1

�k xð Þ YHkh i
" #

¼ 0

ð20Þ
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The derivative of Pn with respect to YHj
in (19) is obtained

from (A6) as

@Pn

@YHj

¼ �
XND

m¼1

h 2ð Þ
m

@Anm

@YHj

þ Anm
@h 2ð Þ

m

@YHj

þ h 0ð Þ
m

@Bnm

@YHj

þ Bnm
@h 0ð Þ

m

@YHj

" #

ð21Þ

where ND is the number of Dirichlet boundary nodes. The
term ∂Bnm/∂ YHj

in (19) and (21) is obtained by (A5) and
(17) as

@Bnm

@YHj

¼ 1

2

Z
W

�l xð Þ Y
0
xð Þ2

D E
c
exp Y xð Þh ic

� 	 ryn xð Þ � rym xð Þdx

ð22Þ

The term ∂Sn/∂YHj
in (19) is obtained on the basis of (A7)

and (17) as

@Sn
@YHj

¼
XMx

e¼1

exp Y eð Þ½ �
XMy

e0 ¼1

exp Y e
0

� �D Eh i
Y

0
eð ÞY 0

e
0

� �D E
c

�
XNx

i¼1

�eeni
XNy

l¼1

XNy

k¼1

De
0
e
0

lk

�
"

�j eð Þ þ �j e
0

� �� �
Gee

0

il h 0ð Þe0
k þ @Gee

0

il

@YHj

h 0ð Þe0
k þGee

0

il

@h 0ð Þe0
k

@YHj

#

ð23Þ

wherelj(e) = lj(x
e),lj(e′) = lj(y

e′),Gil
ee′ is the Green’s function

associated with the zero‐order mean flow equation (A1)
evaluated at node i of element e owing to a unit source at
node l of element e′, and all remaining symbols are introduced
in Appendix A. The equations satisfied by Gil

ee′ and its
derivative are briefly reported in Appendix B (see
Guadagnini and Neuman [1999a] for additional details).
Substituting (21), (22) and (23) in (19) and making use of
(B1) and (B3), one can finally evaluate the second‐order
component of the derivatives of the mean hydraulic head
with respect to hydraulic parameters YHj

. Note that all the
terms required to evaluate ∂hhm(2)ic/∂YHj

are calculated dur-
ing the forward solution of the equation satisfied by hhm(0)ic
and hhm(2)ic.

5. Illustrative Example

[18] We illustrate our methodology by means of a syn-
thetic groundwater flow scenario similar to that analyzed by
Hernandez et al. [2006]. This allows us to compare the
performance and the accuracy of the new algorithm with a
scenario taken from the literature as reference. We consider
superimposition of mean uniform and convergent flows in a
rectangular domain of length 18 and width 8 (all quantities
hereinafter are given in consistent units). Figure 1a depicts a
sketch of the flow domain, with the type of boundary con-
ditions used. The domain is discretized into Ne = 3600 square
elements (40 rows × 90 columns) of uniform size d = 0.2.
Deterministic head values of 10 and 0 are prescribed along the

Figure 1. (a) Setup of the groundwater flow test problem. (b) The Y reference field; Y measurement
locations are depicted by triangles. (c) The h reference field; h measurement locations are depicted by
dots. (d) The pilot point locations: Np = 4 (solid square), Np = 8 (solid square and solid triangle), Np = 16
(solid square, solid triangle, and solid diamond), Np = 32 (solid square, solid triangle, solid diamond, and
open diamond), Np = 64 (solid square, solid triangle, solid diamond, open diamond, and open triangle),
Np = 103 (solid square, solid triangle, solid diamond, open diamond, open triangle, and open square),
Np = 150 (solid square, solid triangle, solid diamond, open diamond, open triangle, open square and
plus), Np = 200 (solid square, solid triangle, solid diamond, open diamond, open triangle, open square,
plus, and cross).
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left and right boundaries, respectively, whereas the top and
the bottom boundaries are impervious. Awell is located in the
center of the domain and pumps continuously at a constant
unit rate.
[19] Using a sequential Gaussian simulator (GCOSIM3D;

see Gómez‐Hernández and Journel, 1993] we generate a
single unconditional realization of Y with zero mean, expo-
nential isotropic variogram with given sill, sY

2 = 4.0, and
integral scale, IY = 1.0. We purposefully set the Y variogram
sill to a value which is relatively large for a system charac-
terized by a single geological unit in order to test the per-
formance of the methodology. We solve the forward flow
problem to obtain the corresponding distribution of heads.
These constitute our reference values of hydraulic conduc-
tivity (Figure 1b) and heads (Figure 1c). We sample the ref-
erence head field at 36measurements points (depicted by dots
in Figure 1c) and the Y field at 16 points (indicated by tri-
angles in Figure 1b). We superimpose a white Gaussian
measurement error with unit variance on both sets of mea-
surements (sYE

2 = shE
2 = 1.0; i.e., m = 1.0 according to (11))

and estimate Y at pilot points by prior ordinary kriging of the
noisy Y “measurements.” This renders a percentage error
associated with hydraulic head measurements that increases
from 10% (close to the left boundary) to more than 100%
(near the right boundary, where heads are close to the pre-
scribed zero value), with an average value of about 50%. The
average percentage error associated with the Ymeasurements
is about 100%. These uncertainties on available measure-
ments can be quite common in practical situations where
only the order of magnitude of hydraulic conductivity is
often known (e.g., Ymeasurements interpreted from particle‐
size distributions) and head measurements are affected by the
accuracy of the instruments, human errors and external fac-
tors (e.g., electrical interference and/or variations in atmo-
spheric pressure).
[20] In our analysis we consider eight different networks

of 4, 8, 16, 32, 64, 103, 150 and 200 pilot points. Figure 1d
reports the details on the number and location of pilot points
for each scenario investigated. In sections 5.1 and 5.2 we
explore: (1) the benefit of basing the inversion of moment
equations on the direct calculation of the derivatives; (2) the
effect of the number of pilot points on the reconstruction of
the Y and h fields by means of either a zero‐ and/or a sec-
ond‐order inversion; and (3) the ability of the inversion
procedure to estimate not only the Y field but also the plau-
sibility weight m, the uncertainty associated with available Y
and h measurements, and the parameters of the Y variogram,
whose functional form is assumed to be known. For these
purposes, and according to the methodology described in
section 3, we solve the inverse problem for various combi-
nations of (1) values of the plausibility weight (m = 0.01, 0.1,
0.5, 0.75, 1.0, 5, 10, 100), (2) variogram sill (sY

2 = 0.5, 1.0,
2.0, 3.0, 3.5, 4.0, 4.5, 5.0, 6.0), and (3) integral scale (IY =
0.25, 0.5, 1.0, 2.0, 4.0) for each network of pilot points
selected. According to the optimization procedure outlined
in section 3, this corresponds to estimate the statistical
parameters m, IY and sY

2 through an exhaustive search, while
the characterization of Y is carried out by traditional (direct)
optimization.
[21] We analyze the impact of a complete second‐order

solution by performing the inversion in two different ways:
(1) approximating the mean hydraulic head in (7) by its
zero‐order component (a = 0; we denote this as zero‐order

inversion), and (2) computing the complete second‐order
solution for the mean hydraulic head (a = 2 in (7); we denote
this as second‐order inversion). Overall, about 3000 scenar-
ios (for each order of inversion) have been explored. A
summary of the results is presented below. Numerical com-
putations have been performed on a CILEA supercomputer,
cluster Xeon‐Exadron of 128 two‐way nodes with an Intel
Xeon 3.06GHz CPU.

5.1. Influence of the Number of Pilot Points
and Estimation of the Plausibility Weight
and Variogram Parameters

[22] A global quantitative analysis about the quality of the
reconstructed Y and h fields can be performed by evaluating
the mean absolute error and root‐mean‐square error of Y (eY
and RMSEY, respectively) and h (eh and RMSEh), defined as

eY ¼ 1

Ne

XNe

i¼1

Y xei
� �
 � a½ �

c
�Yref xei

� ���� ���;
RMSEY ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

Ne

XNe

i¼1

Y xeið Þh i a½ �
c �Yref xeið Þ

h i2vuut ; ð24Þ

eh ¼ 1

Ng

XNg

j¼1

h a½ � xj
� �D E

c
�href xj

� ���� ���;

RMSEh ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

Ng

XNg

j¼1

h a½ � xj
� �D E

c
�href xj

� �h i2vuut ð25Þ

Here, hY(xie)ic[a] (a = 0 or 2) is the mean Y field estimated
during the a‐order inversion at the Ne element centroids, xi

e;
Yref(xi

e) and href(xj
e) are error‐free reference values of Y and

h evaluated at points xi
e and xj, respectively; xj are the

coordinates of grid nodes andNg is the number of nodes (3731
in our example). For comparison purposes, we perform our
calculations (1) with the procedure of Hernandez et al.
[2006], who couple the solution of the flow problem with
the public domain code PEST [Doherty, 2002], and (2) with
our code INME, which makes full use of the expressions
developed in section 4. As an example, Figure 2 depicts
the calculated mean absolute error of Y (Figure 2a) and
h (Figure 2b) as a function of the number of pilot points
and the order of inversion for sY

2 = 4.0, IY = 1.0 and m = 1.0
(i.e., the true, reference values). Figure 2 compares the results
obtained by INME (solid lines), on the basis of the expres-
sions presented in section 4, with those obtained following
the procedure of Hernandez et al. [2006], who approximate
the sensitivity matrix by the incremental ratio (dashed lines).
A similar behavior has been observed for the root‐mean‐
square errors (not reported). The CPU time (in hours) required
for each second‐order inversion is also reported in Figure 2a.
Zero‐order inversion based on the direct calculation of the
sensitivity matrix requires less than one minute for all cases
analyzed. When the solution of the flow problem is coupled
with PEST, the execution time needed for a zero‐order
inversion ranges between about half to one third (depending
on Np) of the time required for a second‐order inversion. The
use of the exact sensitivity matrix results in an improved
accuracy of the reconstruction of the Y field, especially when
a second‐order inversion is performed. Figure 2a suggests
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that the inversion of moment equations is practically unaf-
fordable for large values of model parameters without the
direct evaluation of the sensitivity matrix. The superior
accuracy of the exact derivatives reduces the number of
Levenberg‐Marquardt iterations. This, in addition to the
fact that the system matrices needed to calculate the ele-
ments of the sensitivity matrix are identical for all the
parameters (and coincide with those used to solve the state
equations), leads to the observed drastic reduction of the
computational load.
[23] As expected, eY and eh decrease as the number of

pilot points increases, regardless of the methodology used.
We note that eY and eh display a steep rate of decrease when
Np increases from 16 to 64. Further increments of Np only
result in marginal additional reductions of eY and eh. A
similar behavior has been obtained for various combinations
of the statistical parameters (i.e., sY

2, IY and m), albeit the
value of Np needed to obtain a plateau in eY tends to slightly
increase as sY

2, IY and m decrease (not reported). This behavior
is consistent with that observed by Alcolea et al. [2006a].
In their work, the authors were concerned with the geosta-
tistical inversion of the traditional deterministic groundwater
flow equation under the assumption that the parameters of
the variogram of Y are known. A close inspection of Alcolea
et al. [2006a, Figure 4], presenting the dependence of (24)
on the regularization weight and 4 different values of Np,
reveals a behavior which is consistent with our zero‐order
inversion in Figure 2, for all values of the regularization
weight tested by the authors. In our computational example,
we note that when the exact sensitivity matrix is computed,
the mean absolute error of Y is slightly smaller for the second‐
order than for the zero‐order inversion while themean absolute
errors of h computed with zero‐ and second‐order inversion
are practically identical if Np is sufficiently large.
[24] Additional analyses performed in terms of the model

selection criteria defined in section 3 is not conducive to
identify an optimum number of pilot points as all of them
increase monotonically with Np. A similar conclusion was

reached by Alcolea et al. [2006a], albeit in the context of
deterministic inversion of groundwater flow. The authors
noted that an appropriate identification of the optimum
number of pilot points can be performed on the basis of
criteria such as (24) and (25). Incidentally, we also note
that the revised notion of KIC proposed by Ye et al. [2008,
equation (14)], which has an expression equal to that
included in (12) in which the term NY ln(Nz) is subtracted,
has the same qualitative behavior of (12) for our numerical
example.
[25] With reference to the plausibility weight, our analysis

reveals that NLL, AIC, AICc, HIC, and BIC are not condu-
cive to the identification of an optimum value of m, because
they monotonically decrease with m regardless of (1) the
number of pilot points, (2) the values of sY

2 and IY and (3) the
order of inversion adopted. We found that the ability of KIC
to identify the true plausibility weight increases with Np

and with the order of inversion regardless of the values of
sY
2 and IY adopted. Figure 3 reports the relative fraction of

inversion runs for which KIC identifies a given value of m
as best, for different values of NP and for all the tested
combinations of sY

2 and IY, both for zero‐ and second‐order
inversions. When a second‐order inversion is used with Np ≥
32, more than 90% of the test cases performed identify the
optimum m in the range [0.5, 1.0], the most frequent value
being 0.5. This percentage slightly decreases when a zero‐
order inversion is performed. As shown in Figure 3, the
adoption of a second‐order inversion allows to exclude values
of m which are either much larger (≥5) or smaller (≤0.1) than
the true, reference value. This notwithstanding, the ability
of the zero‐order inversion to identify the optimum value of
the plausibility weight can be judged as satisfactory even with
a relative small number of pilot points.
[26] We now ask how accurately can one estimate q by

means of geostatistical inversion of steady state stochastic
moment equations of flow. Regardless of the number of
pilot points, NLL (as well as AIC, AICc, HIC, and BIC)
cannot identify the parameters of the variogram of Y; it

Figure 2. Mean absolute error of (a) Y, eY, and (b) h, eh versus the number of pilot points obtained with
zero‐ and second‐order inversion with the reference values of sY

2 = 4.0, IY = 1.0, and m = 1.0 evaluated
with the exact sensitivity matrix (solid lines) and approximating the sensitivity matrix by the incremental
ratio (dashed lines). Corresponding CPU times (in hours) are plotted next to the symbols.
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decreases as sY
2 decreases for each combination of m and IY.

Figure 4 reports the relative fraction of inversions for which
KIC identifies a given value of IY as best, for different
values of NP and for all combinations of sY

2 and m, both for
zero‐ and second‐order solutions. When a zero‐order inver-
sion is performed, IY = 1.0 is identified as the optimum value
for about 60% of the test cases. This percentage slightly
decreases to 50% when a second‐order inversion is per-
formed. Figure 5 shows the subset of the results included in
Figure 4 corresponding to 0.5 ≤ m ≤ 1.0; that is, the interval
of m values classified as best according to the analyses
shown in Figure 3. It can be seen that in this case the relative
fraction of inversions identifying the true reference value IY =
1.0 increases up to 100% when an adequate number of pilot
points is adopted, regardless of the order of inversion.
[27] Finally, Table 1 reports the optimum values of m

(together with shE
2 and sYE

2 ), sY
2 and IY corresponding to the

minimum of KIC obtained on the basis of zero‐ and second‐
order inversions for various values of Np. Regardless of the
order of inversion and the number of pilot points adopted,
KIC identifies m = 0.5 and IY = 1.0 as best values. When a
limited number of pilot points is used (Np = 32), KIC on
the basis of the second‐order inversion correctly identifies

the true value of sY
2 ( = 4.0), while a zero‐order inversion

slightly overestimates it. When the number of pilot points
increases, both zero‐ and second‐order solutions tend to
underestimate sY

2. This is consistent with our earlier obser-
vation that the use of a large number of pilot points does not
necessarily renders a more accurate identification of all the
parameters of interest.
[28] Table 2 reports a similar analysis performed when m

is considered to be known (e.g., when the experimental data
are enough to support such an assumption) and set equal to
1.0 (the true, reference value in our test case). Again, KIC
indicates as best the true value IY = 1.0, regardless of the
order of inversion and Np. The second‐order inversion
correctly identifies the true value of the sill almost for all
values of Np, even though it tends to slightly underestimate
it when Np = 103. The zero‐order inversion significantly
overestimates sY

2 for small Np values and renders results
which are similar to those of a second‐order inversion for
increasing Np.
[29] These results are also corroborated by Figure 6,

where KIC is plotted as a function of sY
2 for IY = 1.0, m = 0.5,

1.0 and various values of Np. The difference between KIC
obtained during a zero‐order (dashed lines) and a second‐

Figure 3. Relative fraction of (a) zero‐order and (b) second‐order inversions for which KIC identifies a
given value of m as best, for different values of NP, and for all the analyzed combinations of sY

2 and IY.

Figure 4. Relative fraction of (a) zero‐order and (b) second‐order inversions for which KIC identifies a
given value of IY as best, for different values of NP, and for all the analyzed combinations of sY

2 and m.
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order (solid lines) inversion tends to increase with sY
2 and to

decrease with Np. When a limited number of pilot points is
used, the second‐order solution can identify the optimum sill
more sharply than its zero‐order counterpart.
[30] Finally, we note that our results indicate that the

adoption of large values of Np clearly underestimates the
measurements errors shE

2 and sYE
2 , estimated by (13). This is

consistent with the observation of Neuman [1973] that, in
the presence of data associated with measurement errors, the
adoption of a number of parameters which is too large tends
to allow fitting the model to noise, thus causing the quality
of the parameter estimates to start deteriorating.
[31] Our results suggest that the geostatistical inversion of

groundwater flow moment equations can lead to robust and
computationally affordable estimates of hydraulic and sta-
tistical parameters (including the number of pilot points, the
plausibility weight, sY

2 and IY) of the system on the basis of
successive inversions of zero‐ and second‐order equations.
The latter can be performed according to the procedure
described in the following.
[32] 1. Perform a zero‐order inversion for a set of cases

designed upon varying m, Np, sY
2 and IY (within a physically

reasonable interval) and evaluate KIC. Find the value of m
that minimizes KIC for each combination of Np, sY

2 and IY.
[33] 2. Determine the optimum value of m, �, as the most

frequent value of m identified at step (1).
[34] 3. For the subset of simulations corresponding to m =

�, determine the value of IY that minimizes KIC for given
combinations of Np and sY

2.
[35] 4. Determine the optimum vale of IY, IY , as the most

frequent value of IY identified at step (3).

[36] 5. Perform a set of second‐order inversions with m =
� and IY = IY for different combinations of Np and sY

2 and
evaluate KIC.
[37] 6. Determine sY

2 that minimize KIC evaluated at
point (5) for various Np. When a sufficiently large number of
pilot points is used, the optimum value of sY

2, �2
Y , is inde-

pendent of Np. When Np becomes so large that the model
starts being fitted to noise, a decrease of the estimated sill
value is noted with Np.

5.2. Variance of Log Conductivity and Hydraulic Head

[38] Following convergence of the minimization process,
estimates of Y(x) computed by (1) at element centroids, and
corresponding variance‐covariance values evaluated accord-
ing to (9) are fully conditioned on all available data (log
conductivity and heads). Thus, one can calculate the cor-
responding second‐order conditional variance‐covariance of
predicted heads and fluxes (see equations (40)–(45) in the
work of Guadagnini and Neuman [1999a]). These are fully
conditioned on the same data. As an example, Figure 7 shows
how the second‐order conditional variance of Y, VarYc

[2](x),
(Figure 7a) and of h, Varhc

[2](x), (Figure 7b) varies along the
cross section at x2 = 4.0 (passing through the pumping well)
when sY

2 = 4.0, IY = 1.0 and m = 1. Figure 7 reports the results
obtained with different numbers of pilot points and with the
zero‐order (dashed lines) and second‐order (solid lines) in-
versions. The estimated variance of Y is practically insensitive
to the order of the inversion of mean flow. It decreases as Np

increases, especially in the vicinity of the pilot points loca-
tions. A similar behavior is shown by the variance of the

Figure 5. Relative fraction of (a) zero‐order and (b) second‐order inversions for which KIC identifies a
given value of IY as best, for different values of NP, and all tested values of sY

2 when 0.5 ≤ m ≤ 1.0.

Table 1. Best Estimates of m, shE
2 , sYE

2 , sY
2, and IY, Corresponding

to the Minimum of KIC for Different Values of NP

Np

Zero‐Order Inversion Second‐Order Inversion

m sY
2 IY shE

2 sYE
2 m sY

2 IY shE
2 sYE

2

16 0.5 4.0 1.0 0.7 1.4 0.5 3.0 1.0 0.7 1.5
32 0.5 4.5 1.0 0.5 1.0 0.5 4.0 1.0 0.5 1.1
64 0.5 3.0 1.0 0.4 0.7 0.5 3.0 1.0 0.4 0.7
103 0.5 2.0 1.0 0.3 0.5 0.5 2.0 1.0 0.3 0.6

Table 2. Best Estimates of sY
2, IY, and shE

2 for Different Values of
NP and m = 1

Np

Zero‐Order Inversion Second‐Order Inversion

sY2 IY shE2 a sY2 IY shE2 a

16 6.0 1.0 0.7 4.0 1.0 0.8
32 6.0 1.0 0.5 5.0 1.0 0.6
64 4.5 1.0 0.4 4.0 1.0 0.4
103 3.5 1.0 0.3 3.5 1.0 0.3

aEqual to sYE
2 .
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Figure 6. Dependence of KIC on sY
2 obtained with zero‐order (dashed curves) and second‐order (contin-

uous curves) inversions for IY = 1.0, m = 0.5, 1.0, and (a) Np = 16, (b) Np = 32, (c) Np = 64, and (d) Np = 103.

Figure 7. Cross sections at x2 = 4.0 of the conditional (a) Y variance, VarYc
[2](x), and (b) h variance,

Varhc
[2](x), as function of Np when sY

2 = 4.0, IY = 1.0, and m = 1. The results of the zero‐ and the second‐order
inversion are depicted by dashed and continuous lines, respectively.
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hydraulic head (Figure 7b) even though a larger effect of the
order of the inversion is detectable. As a remark to these
results, we note that prior estimates at pilot points locations
are essentially treated as measurements (with associated
inherent uncertainty) during inversion in the context of the
Regularized Pilot Points Method [Alcolea et al., 2006a;
Hernandez et al., 2006]. These prior values are estimated
from available Y measurements and on the basis of a geos-
tatistical model; the corresponding weight in the covariance
matrix indicates how reliable they can be considered. In addi-
tion to this, we note that unknown Y values at pilot points are
estimated on the basis of a nonlinear combination of Y and
h at measurement points. It is therefore difficult to separate
the effects of Y and hmeasurements on pilot points estimation
variance so that, in principle, one cannot draw general con-
clusions by observing Figure 7. In this sense, as an alternative
to a regular grid of pilot points (the location of which is
fixed), one could consider exploring the effect of randomly
varying the location of pilot points during the optimization
process [Hendricks Franssen, 2001]. We do not pursue this
point further in this work.
[39] Figure 8 displays a cross section (passing through the

pumping well, at x2 = 4.0) of the mean head obtained by

second‐order inversion for different values of Np and adopt-
ing the reference values for m, sY

2 and IY. Corresponding

envelops of ±2
ffiffiffiffiffiffiffiffiffiffiffi
Var 2½ �

hc

q
(second‐order standard deviation of

heads) are also reported together with the reference head
values. The mean hydraulic head is almost insensitive to Np,
and satisfactorily reproduces the reference head values. These
always lay well within the envelops depicted by the confi-
dence intervals.

6. Conclusions

[40] We derived novel equations satisfied by the compo-
nents of the sensitivity matrix of the (ensemble) mean
hydraulic head (up to its second‐order of approximation in
sY). The resulting system of equations has been solved by
finite elements and embedded in an inverse procedure to
condition recursive approximations of nonlocal ensemble
moment equations of steady state flow jointly on measure-
ments of log conductivity, Y, and hydraulic head, h. An
advantage of this methodology is that the system matrices are
identical for all the parameters and coincide with those used
to solve the equations of the forward problem. Solving
directly the aforementioned equations leads to a more accu-

Figure 8. Cross sections at x2 = 4.0 of the conditional mean head as function of Np when sY
2 = 4.0, IY =

1.0, and m = 1. Intervals corresponding to plus and minus two standard deviations of head estimates about
the mean are also shown (dashed lines) together with hydraulic head reference values (symbols).
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rate reconstruction of the Y field (especially when a second‐
order inversion is performed) and to a considerable saving
of the CPU time required to calculate the sensitivity matrix,
as compared to other methods that approximate the sensitivity
matrix by incremental ratios. At the same time, this allows the
modeler to use a large number of unknownmodel parameters.
We illustrate our algorithm and procedure by means of the
synthetic example presented by Hernandez et al. [2006]. Our
work leads to the following key results:
[41] 1. The mean absolute error between the reconstructed

and true Y fields, eY, tends to be slightly smaller for a
second‐order than for a zero‐order inversion. Values of eY
tend to decreasewhen the number of pilot points,Np, increases,
until they reach a plateau which is practically insensitive to
Np.
[42] 2. Identification criteria based on NLL, AIC, AICc,

HIC, and BIC are in general not conducive to the identifi-
cation of an optimum value of the plausibility weight and
variogram parameters.
[43] 3. Estimation of the plausibility weight and integral

scale of Y is quite robust and can be performed with a limited
number of pilot points and with a low‐order approximation of
the moment equations. The latter coincides with the solution
of the traditional deterministic flow equation in an aquifer
with local hydraulic conductivity equal to themean geometric
hydraulic conductivity, KG(x). The ability of KIC to identify
m tends to increase with Np and (slightly) with the order of
inversion, regardless of the assumed statistical parameters of
the underlying Y field.
[44] 4. When a limited number of pilot points is used, the

second‐order solution can identify the optimum sill more
sharply than its zero‐order counterpart. When Np becomes
so large that the model starts being fitted to noise, a decrease
of the estimated sill value is noted with Np. When a suffi-
ciently reliable estimate of m is available (e.g., when experi-
mental information can support such an assumption) the
ability of the second‐order inversion to correctly identify the
true value of sY

2 increases.
[45] 5. In our setting and for the chosen arrangement of pilot

points, we found that the posterior variance of Y and h tends
to decrease as the number of pilot points increases, especially
in the vicinity of Y measurement and pilot points locations.
[46] 6. On the basis of our computational example, one

can see that the use of a large number of pilot points does
not necessary imply a more accurate identification of all the
parameters of interest. At the same time, the number of pilot
points should be large enough to provide the characteriza-
tion of the Y field with enough degrees of freedom. How-
ever, a very large number of model parameters tends to
favor noise fitting, thus causing a deterioration of the quality
of parameter estimates. The optimum number of pilot
points to be adopted during inversion of moment equations
of groundwater flow depends on the quantity one desires
to determine (i.e., the spatial distribution of mean Y, the
parameters of the Y variogram, the measurement error asso-
ciated with the experimental data) and on the adopted flow
model (zero‐ or second‐order equations). Our example
indicates that one should gradually increase Np until the
desired quantities become insensitive to it.
[47] 7. Our results suggest that the geostatistical inversion

of groundwater flow moment equations can benefit from
successive inversions of zero‐ and second‐order equations
to provide a robust and computationally affordable estimate

of hydraulic and (geo‐)statistical parameters (including the
number of pilot points) of the problem. In principle our
approach can be extended to accommodate a conceptuali-
zation of a heterogeneous porous domain as a composite
medium, whenever the latter is embedded in the context of
groundwater flow moment equations, as proposed by Winter
and Tartakovsky [2000, 2002] and Winter et al. [2002]. It is
also amenable to incorporate a multiscale description of
heterogeneous transmissivity, whenever the latter can be
depicted by means of a truncated power variogram, in the
spirit of Neuman and Di Federico [2003, and references
therein] and Neuman et al. [2008].

Appendix A: Finite Element Equations for Mean
Hydraulic Head

[48] We consider steady state flow of groundwater in a
randomly heterogeneous flow domain,W. The flux vector q(x)
and the hydraulic head h(x) obey the continuity equation and
Darcy’s Law subject to given forcing terms (sources and
boundary conditions). Optimum unbiased predictions of h(x)
and q(x) can be rendered via their first ensemble (statistical)
moments (expected or mean values), hh(x)ic and hq(x)ic.
Exact integrodifferential equations for hh(x)ic and hq(x)ic
and the conditional second‐moment (variance‐covariance) of
associated head and flux prediction errors can be found in the
work of Guadagnini and Neuman [1999a]. Guadagnini and
Neuman [1999b] then solve the equations satisfied by the
zero‐ and second‐order components of mean and variance‐
covariance of hydraulic head by a Galerkin finite element
scheme in a two‐dimensional rectangular domain, in the
presence of deterministic forcing terms. In the following we
report only the results of Guadagnini and Neuman [1999a]
that are necessary for the derivation of the sensitivity matrix
for mean heads presented in section 4.
[49] The zero‐order finite element equations for the mean

hydraulic heads read

XN
m¼1

Anmh
0ð Þ
m ¼ b0n; n ¼ 1; 2; . . . ;N ðA1Þ

Here, hm
(0) ≡ hh(0) (xm)ic is the zero‐order approximation of

the mean hydraulic head, N the number of nodes in the
numerical mesh, excluding those on Dirichlet boundary, GD,
b0n is a mean forcing term at node n and Anm are the terms of
a sparse, symmetric matrix given by

Anm ¼
Z
W

KG xð Þryn xð Þ � rym xð Þdx ðA2Þ

KG(x) = exp hY(x)ic and yn(x) are bilinear basis functions.
[50] The corresponding second‐order finite element equa-

tions are

XN
m¼1

Anmh
2ð Þ
m þ Bnmh

0ð Þ
m

h i
¼ Pn þ Sn ; n ¼ 1; 2; . . . ;N ðA3Þ

where hm
(2) ≡ hh(2) (x)ic is a second‐order correction to hm

(0),
their sum yielding the second‐order approximation of the
mean hydraulic head

h 2½ �
m

D E
c
¼ h 0ð Þ

m þ h 2ð Þ
m ðA4Þ
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Bnm are terms of a sparse, symmetric matrix given by

Bnm ¼ 1

2

Z
W

KG xð Þ�2
Y xð Þryn xð Þ � rym xð Þdx ðA5Þ

The coefficients Pn and Sn are computed according to

Pn ¼ �
XND

m¼1

Anmh
2ð Þ
m þ Bnmh

0ð Þ
m

h i
ðA6Þ

Sn ¼
XMx

e¼1

KG eð Þ
XNx

i¼1

�eeni
XMy

e0 ¼1

KG e
0

� �
Y

0
eð ÞY 0

e
0

� �D E
c

�
XNy

l¼1

Gee
0

il

XNy

k¼1

h 0ð Þe0
k De

0
e
0

lk ðA7Þ

where ND is the number of nodes on GD, Mx and My are
number of elements in x and y planes, respectively; KG(e) is
the (uniform) value of KG(x) in element e; Nx and Ny are the
number of nodes in element e and e′within the x and y planes,
respectively; hY ′(e) Y′(e′)ic is the conditional covariance
between Y ′(e) = Y (e) − hY (e)ic in element e and Y ′(e′) in
element e′, the covariance being calculated between the ele-
ments centers of gravity; Gil

ee′ is the Green’s function associ-
ated with the zero‐order mean flow equation (A1) evaluated
at node i of element e owing to a unit source at node l of
element e′ (see AppendixB); hk

(0)e′ is zero‐order head at node k
of element e′ in the y plane; �ni

ee and Dlk
e′e′ are defined as:

�eeni ¼
Z
e

rxyn xeð Þ � rxy i x
eð Þdx ðA8Þ

De
0
e
0

lk ¼
Z
e0

ryy j ye
0� �

� ryyk ye
0� �
dy ðA9Þ

with the integrals being computed over elements e and e′.

Appendix B: Finite Element Equations
for the Zero‐Order Green’s Function and Its
Derivatives With Respect to Model Parameters

[51] The zero‐order approximation of the mean Green’s
function satisfies [Guadagnini and Neuman, 1999a]

ry KG yð Þry G 0ð Þ y; xð Þ
D E

c

h i
þ � y� xð Þ ¼ 0; on W ðB1Þ

with homogeneous boundary conditions. Equation (B1) is
solved by finite elements upon placing a point source of unit
strength at node p (p = 1, 2, …, N) in the x plane according
to

XN
m¼1

AnmGmp ¼ �1 n ¼ 1; 2; . . . ;N ðB2Þ

Making use of (16) and (17), the derivative of the order
approximation of the mean Green’s function with respect to
the jth hydraulic parameter YHj

(j = 1,…., NY) is given by

XN
m¼1

Anm
@Gmp

@YHj

¼ �
XN
m¼1

Gmp

Z
W

exp Y xð Þh ic�j xð Þryn � rymdx

0
@

1
A

ðB3Þ
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