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Summary Small scale variability of hydraulic conductivity controls ground water contam-
inant transport and some of the subtle aspects of transport through heterogeneous media
(e.g., mixing and tailing). Unfortunately, it cannot be identified. This paper addresses the
question of whether the presence of high frequency fluctuations, which define small scale
variability, impedes the characterization of large scale variability patterns. In parallel, we
investigate whether including small scale variability allows us to reproduce tailing in
breakthrough curves. To this end, we solve the inverse problem using the regularized pilot
points method for simulating fields of hydraulic conductivity conditioned to available
information. Heterogeneity of hydraulic conductivity is represented by two nested vario-
grams simulating small scale (short range variogram) and large scale (long range) variabil-
ity patterns. Calibrated fields are applied to the prediction of a transport problem.
Application to four synthetic examples (with varying importance of the small scale vari-
ability) shows that, first, the calibrations reproduce the statistics of the ‘true’’ fields
and, second, that a good characterization of the small scale variability is not critical
for groundwater flow modeling. More important, small scale variability leads to increased
tailing in solute breakthrough curves and needs to be acknowledged for proper transport
prediction, which is rarely the case in aquifer modeling practice.
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Introduction

Characterization of heterogeneity is essential for contami-
nant transport. Solutions obtained using the advection-dis-
persion equation (ADE) while ignoring spatial variability
display numerous departures from field observations (Carre-
ra, 1993). These include the well known scale effects of dis-
persivity (Lallemand-Barres and Peaudecerf, 1978; Gelhar
et al., 1985, 1992; Neuman, 1990), but also time and direc-
tional dependence of apparent porosity (Sanchez-Vila and
Carrera, 1997; Neuman, 2005) and tailing in breakthrough
curves (Adams and Gelhar, 1992; Kennedy and Lennox,
2001; Fernandez-Garcia et al., 2005). The literature shows
consistent discrepancies between the breakthrough curves
(BTCs) predicted by the ADE and the measured ones (Valloc-
chi, 1985; Carrera, 1993; Kosakowski, 2004). Tailing be-
comes critical for remediation systems and contaminant
migration whenever small concentrations are of concern,
because these may last much longer than predicted by the
ADE. In fact, tailing, which proves the non-Fickian nature
of solute transport, is ubiquitous and can be found even in
‘*homogeneous’’ laboratory experiments (Silliman and
Simpson, 1987; Levy and Berkowitz, 2003; Cortis and Berko-
witz, 2004). These experiments show that tailing can be
attributed to small scale heterogeneity, which causes solute
mass to enter into low permeability regions to trail behind
the bulk of the plume. This causes, first, spreading and,
eventually, mixing. Therefore, understanding and simulat-
ing tailing does allow to separate these two concepts, which
is important because mixing may control chemical reactions
(De Simoni et al., 2007) while spreading controls plume ex-
tent (Dentz and Carrera, 2007).

Tailing in BTCs is usually simulated by adding terms rep-
resenting the exchange of solute between mobile and immo-
bile regions (multirate mass transfer) to the ADE (Rasmuson,
1985; Haggerty and Gorelick, 1995). These terms can be
represented by means of a memory function (Carrera
et al., 1998; Haggerty et al., 2000). The concept has been
generalized by the continuous time random walk approach
(see a review in Berkowitz et al., 2006), which allows for
a systematic study of the transition from normal (Fickian)
to anomalous (non-Fickian) transport behavior. However,
none of these approaches links explicitly the additional
terms to actual variability patterns, so that it is not possible
to define them a priori.

While tailing may be attributed to heterogeneity, sto-
chastic research has concentrated on explaining the scale
growth of observed dispersivities (Dagan, 1986). In this con-
text, the universal scaling theory of Neuman (1990) is par-
ticularly relevant to our work. According to this theory,
hydraulic conductivity displays many scales of heterogene-
ity at any given sample size. In fact, it is this superposition
what explains the observed scale dependence of dispersivi-
ty. Large scale variability can be characterized stochasti-
cally and, one hopes, identified with some accuracy using
geological maps, geophysics, model calibration, etc. Small
scale variability is defined by (high frequency) fluctuations
at length scales smaller than typical distances between
boreholes. Thus, its characterization is difficult, even hardly
possible, with usually available data. As a result, small scale
variability is often disregarded in hydrogeological modeling.

In fact, Rubin et al. (2003) developed an approach to define
dispersivity as a function of the scale of variability trun-
cated by modeling. Unfortunately, it is not known if the
superposition of variability scales reproduces tailing. Cer-
tainly, ignoring small scale variability does not improve
the reproduction of late time behavior of solute transport.

Identification of heterogeneity can be achieved using
conditional estimation or conditional simulation methods.
The first group seeks a deterministic, though uncertain,
optimum characterization in the sense of minimum estima-
tion error, honoring all available data (typically, hydraulic
conductivity and head measurements). This group includes
linearized cokriging (Kitanidis and Vomvoris, 1983), condi-
tional expectation (Dagan, 1985) and maximum likelihood
estimation (Carrera and Neuman, 1986), among others.
While formulations of this group are different, they do not
vary from each other in the essence (Carrera et al., 2005).
All of them neglect the effect of small scale variability,
and the estimated fields are inherently smooth. This limita-
tion can be overcome by conditional moment equations,
where one seeks estimates of mean parameters while
acknowledging the effect of small scale variability (Guadag-
nini and Neuman, 1999, 2001; Guadagnini et al., 2003; Her-
nandez et al., 2003, 2006). Conditional simulation methods
are explicitly stochastic and can accommodate small scale
variability. They yield a number of equally likely realiza-
tions of the unknown field conditioned to all available infor-
mation (Sahuquillo et al., 1992; Gomez-Hernandez et al.,
1997; Capilla et al., 1997; Hendricks Franssen, 2001; Hen-
dricks Franssen et al., 2003).

The pilot points method (de Marsily et al., 1984; RamaR-
ao et al., 1995; Lavenue and Pickens, 1992) is a flexible
parameterization technique, that can be used both for con-
ditional estimation and for conditional simulation. The
method facilitates accommodating small scale variability.
It has been successfully applied to a number of problems
(RamaRao et al., 1995; Vesselinov et al., 2001; Hernandez
et al., 2003). This approach can help in realizing the hope
of simulating hydraulic conductivity fields that are consis-
tent with available large scale data and yet contain high fre-
quency fluctuations.

Despite the outstanding levels of sophistication reached
by the aforementioned techniques (e.g. considering increas-
ingly complex systems and different types of conditioning
data), little attention has been devoted to test their capa-
bilities for reproducing tailing of breakthrough curves and
the role of small scale variability of hydraulic conductivity.
The objective of this paper is to present a step in this direc-
tion. Specifically, we aim at evaluating whether the pres-
ence of high frequency fluctuations impedes the
characterization of large scale variability trends and
whether including small scale fluctuations allows us to
reproduce tailing in BTCs.

Procedure for representing small scale
variability

The procedure is tested using four synthetic cases on a sin-
gle domain with increasing level of small scale variability. In
essence, the procedure follows the steps of Meier et al.
(2001) and Hendricks Franssen (2001):
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(1) Definition of the problem domain.

(2) Generation of four ‘‘true’’ logioK (Y hereinafter)
fields with increasing small scale variability.

(3) Generation of the available drawdown data.

(4) Estimation and simulations of Y field conditioned to Y
and drawdown data using the regularized pilot points
method (Appendix A).

(5) Application of the calibrated Y-fields to transport
prediction.

These steps are outlined below.
Definition of the problem domain

The problem domain is a 400 m x 400 m square which is dis-
cretized using elements of 10 m x 10 m. This is enlarged to a
global domain of 3800 m x 3800 m (Fig. 1) to avoid spurious
boundary effects. Hydraulic tests and transport prediction
take place in the central portion. Outside, the element size
increases as the mesh progresses towards the boundaries.
The whole domain is used for flow calibration, while only
the central portion is used for transport predictions. All runs
were performed using TRANSIN code (Medina and Carrera,
2003), as modified by Alcolea et al. (2006a). This code uses
a second order Galerkin method for simulating transport,
which requires a Peclet number smaller than 2 for stability.

Generation of the ‘‘true’’ conductivity fields

First, we select 10 measurement locations at the central
part of the domain and set a value of Y at those points (Y
measurements, common for all four tests). Then, we gener-
ate four *‘true’’ Y fields (Fig. 2) by sequential Gaussian sim-
ulation (Deutsch and Journel, 1992), conditioned to the 10
error-free measurements and the geostatistical models pre-
sented in Table 1. These models are stationary with a vari-
ance of 2 [log;o m?/s]. The spatial variability of Y fields is

S=

A
\4

3800 m

Figure 1
transport prediction).

s=0 HH

simulated by spherical variograms. These display linear
behavior at the origin, which ensures some small scale var-
iability. However, their slope (and, thus, the importance of
small scale variability) is reduced when the range is in-
creased. To control both the total range and relative impor-
tance of small scale variability, we defined variograms by
superimposing two nested spherical structures of 40 and
200 m range, representing the small and large scales of var-
iability, respectively. The four variograms differ on the con-
tribution of the short range structure, ranging from none
(NH) to 75% (HH). This contribution is measured as the ratio
of the sill of the short range structure to the global one
(Table 1). The procedure is such that measurements present
a positive bias with respect to the ‘‘true’’ fields. This may
reflect practical situations when either wells are drilled in
known highly producing areas or when wells drilled in low
permeability zones are abandoned.

Generation of the available drawdown data

Drawdown data come from three independent pumping
tests in the most productive wells of the central part
(pumping rates of 10~3m3/s at wells B1, B2 and B3 in
Fig. 1). ‘‘Real’’ steady-state drawdowns were simulated
at grid nodes (Fig. 3) using the four ‘‘true’’ Y fields and
prescribing a zero drawdown as initial condition and at
the boundaries. Drawdowns were calculated at the 10
measurement locations displayed in Fig. 1. A Gaussian
white noise was added to those data to simulate measure-
ment errors. Different noise levels were analyzed to test
the effect of measurement errors in the flow calibrations
and transport predictions. Results were not very sensitive
to noise level. Finally, standard deviations of 0.25m for
the pumping test at well B1 and 0.15 m for the pumping
tests at wells B2 and B3 were assigned as noise level
(1% of the maximum drawdown at each test, the largest
noise level tested).
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Flow domain and location of conditioning measurements. The inset bounds the zone of interest (model domain for
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NH test

LH test

Figure 2 Zone of interest of the *‘true’’ Y fields. Notice that the large scale trends of NH (low Y in the middle, high Y in the lower
right corner, etc.) are reproduced in all realizations. Still, small scale variability, as reflected by the granularity of the fields,

increases from NH to HH.

Table 1
hydraulic conductivity fields

Statistical parameters of nested structures defining variograms used for the generation of the four ‘‘true’’ log-

Synthetic test Small scale variability

Nested structure defining

Small scale heterogeneity

Large scale heterogeneity

Range (m) Sill (logso[m/s]?) Range (m) Sill (logso[m/s]?)
NH None — — 200 2
LH Low 40 0.5 200 1.5
MH Medium 40 1.0 200 1.0
HH High 40 1.5 200 0.5

Calibration of the Y fields using the regularized
pilot points method

Conditional estimation and 20 conditional simulations of the
Y field are obtained for each synthetic test (a total of 84 cal-
ibrations) by conditioning the model to the available Y and
drawdown measurements, as well as their initial drifts (con-
ditioned to the geostatistical model and Y measurements
only). The geostatistical models are considered known and
error-free (Table 1). The pilot points are arranged on a reg-
ular network of 81 points within the zone of interest (spac-
ing of 50 m, equivalent to 4.5 pilot points per correlation
range of the long range structure in each direction). Sixteen
additional pilot points are located beyond the zone of inter-
est (coarse discretization area in Fig. 1).

Following the methodology of Medina and Carrera (2003),
the a posteriori statistical analysis (step 3 in the inversion

methodology, see Appendix A) was performed for each real-
ization of the Y field, finding the optimum weights for both
conditional estimation and simulations. These weights were
always 1.0, both for the term of state variables and for the
plausibility term. This finding confirms the results of Alcolea
et al. (2006b).

Application of the calibrated Y-fields to transport
prediction

The transport problem used for predictions consists of the
instantaneous invasion (i.e., a 9900 s injection pulse) of a
solute in the zone of interest. To this end, we first simulate
a steady state flow field in the finely gridded central domain
(Fig. 1) by imposing no flow at the left and right segments
and a head gradient of 1% between the lower and upper seg-
ments. The solute enters the domain with a concentration
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Pumping at B1

NH test

LH test

MH test

HH test

Figure 3
pumping wells.

of 100 ppm through the lower segment. We choose an injec-
tion line instead of point injection to minimize the impact
of the hydraulic conductivity value in the vicinity of the
point of injection. Values of 8 m and 1 m were chosen for
longitudinal and transverse dispersivities, respectively, in
all runs. The same values were adopted for conditional sim-
ulations and for the true case because both attempt to
reproduce the same scales of variability. Therefore, disper-
sivities reflect the same unmodeled sources of velocity fluc-
tuations (i.e., high variance and extremely small range,
smaller than grid size, variability of hydraulic conductivity).
We could have adopted larger dispersivities for the condi-
tional estimation cases because these do not attempt to
reproduce small scale variability. However, we preferred
to keep the same dispersivity values, both for simplicity

Pumping at B2

Pumping at B3

|
[
Hzg
|

““True’’ steady state drawdowns (in m) at the zone of interest. Crosses at pictures in row 1 depict the location of

and consistency in analyzing the role of small scale variabil-
ity. In all cases, these values of dispersivities minimize the
numerical instabilities. Porosity and saturated thickness are
also constant, with values of 0.1 and 0.01 m, respectively.
An image of the fingering nature of transport in the ‘true’’
domains is given in Fig. 4, which displays a continuous injec-
tion of tracer with a concentration of 1 ppm. Integrated flux
averaged BTC at the upper segment will be used for evalu-
ating the transport predictions.

Results

Results are evaluated both qualitatively (Y maps and
histograms and concentration fits) and quantitatively. The
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quantitative analysis is performed using an error vector e,
defined as the difference between calculated and ‘‘true’”’
values of the Y field at each block of the zone of interest
(1600 blocks of 10 m x 10 m). We use the following statistics
for analyzing results from the estimation process:

(1) Total objective function (F in Eq. (A1)).
(2) Mean absolute error of the Y field:

1 1600 1 1600 )
_ | — Ytrue _ Yca o 1
e = 500 2= 1% = 70 ) | (1)

(3) Root mean square error of the Y field (RMSEy) and the
analogous magnitudes for drawdowns and concentra-
tions (RMSEs and RMSE., respectively)

1600
1

1/2
RMSEy = [~ Y &2 (2)
(100 2o

We test the performance of the calibrated Y fields for
predicting transport BTCs using the peak concentration
and arrival time as well as the slope of the tail. The latter
is obtained through regression of late time concentrations.
The late time portion of the BTC often displays a ‘‘bumpy’’
aspect due to the development of preferential flow paths
(Fig. 4). As a result, the definition of this slope is somewhat
arbitrary. We chose as ‘‘late time’’ the portion with con-
centrations three orders of magnitude below the peak.

Calibration results are presented first. The Y fields and
estimation errors ey and RMSEy are presented in Fig. 5.
The histograms of the Y values and the corresponding statis-
tical moments are depicted in Fig. 6 and Table 2, respec-
tively. The match to drawdown data as measured by

“True’’ logso concentrations obtained after 9900's (row 1), 39,000 s (row 2) and 1.4x 10°s (row 3) of a continuous
injection at the lower boundary (input concentration is 1 ppm).

RMSE; is displayed in Fig. 7. With regard to transport predic-
tion, the BTCs obtained with the calibrated Y fields are pre-
sented in Fig. 8. The corresponding flow and transport mass
balances are depicted in Fig. 9. Peak concentrations, arrival
times and the slope characterizing the late time behavior of
the BTC are summarized in Table 3.

The first observation that becomes apparent from Fig. 5
is the strong effect of conditioning to drawdowns on esti-
mated/simulated hydraulic conductivities. For any given
test and realization (CE or CS), the field obtained by condi-
tioning only to Y measurements is qualitatively worse than
the one obtained by conditioning to drawdown and Y data.
Therefore, calibration to drawdown data using the optimum
weight of the plausibility term reduces estimation errors.
The reduction is not dramatic in terms of estimation errors
(both ey and RMSEy are reduced by about 30%). However,
conditioning to drawdowns improves the overall look of
the computed field (it resembles vaguely the *‘true’’ field).
In fact, estimation or simulations conditioned to hydraulic
conductivity data only are of limited interest in practice,
as they ignore the valuable information contained in the
drawdowns (or any other dependent variable) data set.

The main difference between conditional estimation and
simulation stems from the variability, which is best ana-
lyzed through the histograms (Fig. 6). Histograms of the
conditional estimation to Y measurements, CE(Y), are al-
most symmetric around the mean value of Y measurements
(Fig. 6), as measured by the small skewness of the distribu-
tion (Table 2). This effect becomes increasingly apparent
with increasing relevance of small scale variability, as mea-
sured by the variances (decrease), the skewness (tend to
zero) and the kurtosis coefficients (increase) in Table 2.
Thus, histograms of CE(Y) (for any given relevance of the
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NH test

“True”

Data
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e=1.63; R=2.22

Figure 5 Y fields obtained for the largest relevance of the small scale variability (HH test; subset of pictures at the right of the
Figure) and when this variability is neglected (NH test). Two columns are displayed for each subset. The left column displays the Y
field conditioned to Y measurements only. The right column displays the Y field conditioned to Y and drawdown measurements. Row
1 contains the ‘‘true’’ Y fields. Row 2 contains the estimated fields and rows 3 and 4 contain the results of two out of 20 simulations.
In the insets, e and R denote mean absolute error and root mean square error (ey and RMSEy in Egs. (1) and (2)).

small scale variability) are centered on the measurements
mean and are too sharp (and more so as the degree of small
scale variability increases). The same effect, though less
notable, can be observed in the fields characterized by con-
ditional estimation to Y and drawdown data, CE(Y, s). How-
ever, these outcomes are better as these fields are biased
towards the mean value of the corresponding ‘‘true’’ field.
In summary, conditional estimation to Y measurements only
leads to fields that are too homogeneous (narrow histogram)
and centered around direct measurements. Adding draw-
downs to conditioning data broadens the histogram and dis-
places it towards the ‘‘true’’ mean, but not sufficiently.
Conversely, simulations (regardless of the type of condi-
tioning data) yield more realistic results (Fig. 5), even
though their estimation errors are larger than the ones ob-
tained by conditional estimation (as expected). Simulations
conditioned only to Y data, CS(Y), overestimate hydraulic
conductivities (Fig. 6) because measurements present a po-

e=0.94; R=1.21

HH test

[ s . ™ |
bl '.1 ﬁ d
. i3l
HF‘I.F,J ..

19

sitive bias. Fortunately, conditioning to drawdown data
helps to alleviate this problem and the ensembles of simula-
tions conditioned to Y and drawdown data, CS(Y, s), resem-
ble (for any given relevance of the small scale variability)
the histogram of the ‘‘true’’ fields (Fig. 6) and the first
two moments of the corresponding distributions (Table 2).

Analyzing the role of small scale variability on calibration
is complex. We use drawdown fits (RMSE; in Fig. 7) to ana-
lyze the improvement caused by conditioning (similar con-
clusions can be reached by analyzing the total objective
function F, not shown here). Best results are most often ob-
tained when the relevance of small scale variability is neg-
ligible (NH test). This case yields the smallest values of
RMSE; (and F) in most cases, because the ‘‘true’’ field is
smoothest (Fig. 2) and, thus, easiest to be characterized.
However, results do not degrade monotonically with
increasing relevance of small scale variability. In any case,
RMSE, are very small for all realizations (even smaller than
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Figure 6 Histogram of Y fields. Results of conditional simulation are the ensemble of 20 realizations. In the legend, CE and CS
denote conditional estimation and conditional simulation, respectively; Y and s denote the type of conditioning data (hydraulic

conductivity and drawdown, respectively).

the standard deviation of measurement errors, which sug-
gests a certain overparameterization) and display little
dependence on the level of small scale variability. In sum-
mary, small scale variability does not control the behavior
of steady-state heads, which is ruled by the large scale het-
erogeneity patterns. This implies that (steady-state)
hydraulic data will not suffice for characterizing high fre-
quency fluctuations.

Small scale variability becomes important for modeling
contaminant transport. The late time behavior of the
BTCs depends to a large extent on small scale variability
(Carrera, 1993; Berkowitz et al., 2006). Regardless of the

type and number of conditioning data, conditional estima-
tion, which yields smooth Y fields, does not match the
slope of the late-time portion of BTCs (Fig. 8). The error
in calculated slope increases as the relevance of the small
scale variability becomes more important (Table 3). Con-
versely, most conditional simulations reproduce this
slope, even when only Y measurements are used for con-
ditioning. In this case, breakthroughs are too fast and
peak concentrations too high, reflecting the bias of Y
measurements. Moreover, simulated BTCs span a very
broad range. Yet, all simulations display a tail similar to
the ‘‘true’’ BTC.
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Table 2 Statistical moments of the distribution of measurements, ‘‘true’’ and estimated/simulated fields (in bold, values of
mean and variance which are closest to the ‘‘true’’ ones)

Measurements Mean Variance Skewness Kurtosis
—3.94 1.50 0.04 0.69
NH test “True’’ field —4.60 1.57 -0.32 —0.14
CE (Y) -3.90 0.47 -0.36 0.10
CE (Y, s) —4.33 0.73 0.29 —0.31
CS (Y) -3.95 1.50 —0.05 —0.04
CS (Y, s) —4.53 1.52 -0.16 0.16
LH test ““True’’ field —4.65 1.47 -0.11 —0.01
CE (Y) -3.93 0.25 -0.28 1.06
CE (Y, s) —4.48 0.53 0.18 -0.32
CS (Y) -3.99 1.73 —0.04 0.01
CS (Y, s) —4.68 1.75 —0.11 0.14
MH test ““True’’ field —4.68 1.55 0.05 —0.04
CE (Y) -3.94 0.14 -0.14 3.78
CE (Y, s) —4.58 0.42 0.15 -0.10
CS (Y) —4.01 2.02 —0.04 0.03
CS (Y, s) —4.74 1.88 -0.10 0.07
HH test ““True’’ field —4.71 1.71 0.12 —0.08
CE (Y) -3.95 0.07 —0.02 12.87
CE (Y, s) —4.63 0.33 0.23 0.32
CS (Y) —4.01 2.33 —0.05 0.04
CS (Y, s) —4.79 2.07 -0.07 0.04
0.16 — X
0
O O
— X
0.12 —
o) © A
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2 008 — O A
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Figure 7 Root mean square error of drawdowns (RMSE;) for all calibrations, conditioned to hydraulic conductivity and drawdown
data.
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Figure 8 Predicted BTCs for a pulse injection using the Y fields conditioned to Y measurements only (left column) and to Y and
drawdown measurements (right column). ‘“True’’ BTCs are depicted with dots, the BTC corresponding to the conditional estimation
with thick line and the 20 BTCs corresponding to conditional simulation with thin grey line.

The impact of using also drawdowns for conditioning is
manifested again in Fig. 8 and Table 3. First, errors in peak
time, peak concentration, final slope and RMSE. decrease as

expected (both for conditional estimation and simulation).
Second, the uncertainty of the predicted BTCs using condi-
tional simulations is reduced substantially, as measured by
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Figure 9 Mass balance of transport predictions. (a) Released volume of water through the upper boundary of the zone of interest
and (b) tracer mass remaining in the aquifer at the end of the simulation.

Table 3 Peak time, peak concentration and late-time slope of the BTCs for the different realizations (mean value and variance
for conditional simulations)

Conditioned to Y Conditioned to Y, drawdown
logio Peak  logio Peak  Slope RMSE, logio Peak  logio Peak  Slope RMSE,
time conc. time conc.
NH test “True’’ 6.40 -2.90 -2.96 — 6.40 -2.90 -2.96 —
CE 5.78 -2.22 -7.85 9.34-107*  6.54 —2.88 —4.16 8.16-107°
CS (mean) 5.75 —2.26 —3.27 3.55-107%  6.49 —2.96 —2.91 8.88-107°
LH test “True’’ 6.48 -2.96 -3.24 - 6.48 -2.96 -3.24 -
CE 5.90 —2.31 -16.39 6.73-107*  6.71 —3.04 -5.53 9.21-107°
CS (mean) 5.77 —2.28 —3.54 3.35-10°  6.59 —3.08 —2.97 8.64-107°
MH test  *‘True’’ 6.56 -3.02 —-2.44 — 6.56 -3.02 -2.44 —
CE 5.95 -2.32 —27.78 6.29-107*  6.77 —3.11 —4.62 9.26-107°
CS (mean) 5.75 —2.27 -3.80 3.40-107°  6.68 -3.14 -2.76 7.49-107°
HH test  “‘True”’ 6.56 -3.02 -2.29 - 6.56 -3.02 -2.29 -
CE 5.95 -2.29 —39.59 6.51-107* 6.76 -3.10 -5.27 9.24-107°

CS (mean)  5.73 —2.25 —4.23 3.55-103  6.68 —3.14 -2.74  7.90-10°
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the statistics listed in Table 3. Qualitatively, one can ob-
serve how the ‘‘true’’ BTCs are bounded by the set of pre-
dicted BTCs obtained with the simulated fields, for any
given relevance of the small scale variability. This is corrob-
orated by the reduction of errors in late time slope (RMSE.
in Table 3). In short, bias effects introduced by conditioning
only to Y measurements are removed by conditioning also to
drawdowns. It is also important to notice that such condi-
tioning reduces uncertainty (as measured by the width of
the envelope of simulated BTCs) in all cases. Reduction is
most significant for the NH case (i.e., no short range vari-
ability), which reflects again that drawdowns contain little
information about small scale variability patterns.

Flow mass balance is somewhat independent of the rele-
vance of the small scale variability (Fig. 9a) and both condi-
tional estimation and conditional simulation methods yield
flow mass balances close to the *‘true’’ ones (in fact, CE re-
sults are better than many CS’s). This result confirms that
flow behavior is controlled by the large scale patterns of
heterogeneity. Conversely, transport mass balance depends
to a large extent on, first, the type of conditioning (estima-
tion versus simulation), and second, on the relevance of
small scale variability. All conditional simulations reproduce
the ‘‘true’’ mass balance better than conditional estima-
tion. The smoothness of conditional estimation Y fields fa-
vors that most solute mass has been washed away by the
end of the simulation. As variability increases, increasing
portions of mass remain retained in low permeability areas.
This left-over mass is what caused tailing in the first place.
It is also what explains the large differences in solute mass
balances in Fig. 9b. In fact, reproducing trailing solute mass
allows proper separation between mixing and spreading,
which was one of our original motivations.

Conclusions

This work was motivated by the concept that one may be
able to identify rather accurately the large scale (low
frequency) trends of spatial variability, but not the high
frequency components. Yet, these are relevant for prop-
erly simulating and understanding solute transport through
heterogeneous media (or any other process that depends
non-linearly on K, for that matter). Accepting that small
scale variability cannot be identified, we follow on the
steps of Gomez-Hernandez et al. (1997), Hendricks Frans-
sen (2001) and RamaRao et al. (1995). That is, we first
simulate fields conditioned to all available direct measure-
ments and conceptual constraints. Here, direct measure-
ments were exact point measurements of log;oK and the
only conceptual constraint was the assumption that the
‘"true’’ field was a stationary random field with two nested
variograms. The resulting random drift is then perturbed so
as to ensure that observations (here, drawdowns) are well
fitted by the model, using the regularized pilot points
method. The question is whether this approach does in-
deed allow accurate transport simulations. The application
leads to the following conclusions:

(1) Adding a component of small scale variability (i.e.,
simulating log;oK with two nested variograms) leads
to increased tailing in transport simulations. The tail

slope is much larger than that observed in the ‘‘true’’
breakthrough curves (receeding limb too steep). Yet,
our results suggest that the slope may be decreased
by adding more nested variograms. This is in agree-
ment with the universal scaling theory of Neuman.

(2) Simulated fields reproduce the statistics of the
“‘true’’ field. This confirms the results of Gémez-Her-
nandez et al. (1997), Hendricks Franssen (2001), and
RamaRao et al. (1995).

(3) Simulated fields reproduce the main features of
“‘true’’ BTCs (arrival time, peak concentration and
tail slope). This confirms the main conjecture that
motivated this work, namely that one does not need
to identify small scale variability, but to simulate its
presence. This implies that reliable transport predic-
tions require a good stochastic description, but not
precise knowledge, of small scale variability.

(4) When small scale variability is ignored (as in the case
of conditional estimation), simulated BTCs reproduce
arrival time and peak concentration, but not the tail.
This is not critical when the small scale component
(NH test) is negligible. In such cases, optimal (smooth)
estimation of hydraulic conductivity yields good
results. However, in view of the ubiquity of tailing,
we feel that this will be rarely, if ever, the case in
practice. Thus, the use of conditional estimation,
which neglects the small scale variability (with the
exception of moment equations), is not recommended
if one seeks meaningful transport predictions.

(5) When conditioning to drawdowns (in fact, to depen-
dent variables) is not performed, simulated break-
through curves reproduce the shape of ‘‘true’’ BTCs
(in log t—log c scale), but they may be biased if direct
measurements are biased, which we fear is often the
case.

Much remains to be done. Here we assumed that the
structure of variability is known (known variograms, Kerrou
et al., 2008). Moreover, the adopted structure is relatively
simple (stationary random field defined by only two nested
variograms). Dealing with more complex structures will be
needed and will require overcoming several difficulties. In
this context, the results presented here should be viewed
as a hopeful step in the direction of simulating transport
through heterogeneous media in a realistic manner.
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Appendix A. Inversion methodology: the
regularized pilot points method

The inversion technique used in this work is a modification
of the pilot points method (de Marsily et al., 1984; Lavenue
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and de Marsily, 2001), to include a plausibility term. Algo-
rithmic details of this methodology can be found in previous
works (Alcolea et al., 2006a,b). The procedure can be sum-
marized as follows:

(1) Parameterization. The unknown hydraulic property
(typically logigK) is expressed as the superposition of
two fields: a drift and an uncertain residual. The latter
is a linear combination of the model parameters (value
of the property at pilot points locations). The drift can
be calculated by conditional estimation or conditional
simulation, in which case the drift is a random func-
tion. In both cases, all available information (direct
measurements, geophysics, geological data, etc.) can
be used for conditioning.

Optimization of model parameters. The optimum set
of model parameters minimizes an objective function
F that quantifies the misfit between calculated and
measured data:

—_
N
~

nstat

F(p) = Z Bi(si =)'V, (s —s7)

ntypar

+ > 1P — PV, (P — P))
=1

where the first term measures the misfits between
calculated (s;) and measured (s;) ‘nstat’ types of state
variables and the second is a plausibility term which
measures the departure of the model parameters p;
from their prior information p; (‘ntypar’ denotes the
number of types of parameters). Vs and V, (block
matrices containing V;, and V;,, respectively) are the
best guess of the corresponding covariance matrices
and f; and p; are weighting scalars correcting the
specification of V5, and V,, respectively. Prior esti-
mates of model parameters can be calculated by con-
ditional estimation or simulation to available
measurements. For the case of conditional estima-
tion, Vp is the kriging error covariance matrix (Vy).
V,, is corrected if conditional simulation is performed
(Vp = 2Vy; see Appendix B).

Finding the optimum weighting scalars B; and y; (a
posteriori statistical analysis). The optimization pro-
cess is repeated using different values of the weight-
ing scalars. Assigning low weights (u;) to model
parameters disregards their prior information, but
leads to the best fit of the measured state variables.
Conversely, assigning large weights to model parame-
ters disregards the measured state variables, biasing
the solution towards prior information. The optimal
values are the ones leading to the maximum expected
likelihood of the parameters given the data (Medina
and Carrera, 2003).

—_
w
~

Appendix B. A priori covariance matrix of
parameters

The formulation of the regularized pilot points method re-
quires the specification of the a priori covariance matrix
of parameters. If kriging is used for defining the drift (step
1 of the inversion methodology), this matrix is the kriging

covariance matrix. If simulation is performed, the covari-
ance matrix is calculated as follows.

Let Y be the vector of true values of the field at the ne
points/blocks to be estimated. Let Y€ and Y be the vectors
of kriged and simulated values, respectively. Let Vx and Vs
be the kriging and conditional simulation error covariance
matrices, respectively. M is a matrix such that V=M - M®
and u is a vector of independent Gaussian variables u; with
zero mean and unit variance.

Conditional simulation can be expressed as

Yes =Y+ M-u (A2)

The m—nth component of the covariance matrix of CS errors
is

(Ves)ma = COVIYy — Y, Y77 = Yo (A3)

Substituting Eq. (A2) in (A3) and using the definition of
covariance:

ne ne
(Ves)mn = E[(Yg —Ym + ZMmju,-) <Y5 — Yo+ ZMnkuk>]
j=1 k=1
ne ne
= E[(Yﬁ, - Ym)(Yg - Yn)} + Z ZMijnkE[ujuK]
j=1 K=1
ne ne
MmiE[U;(Ys = Ya) + > MucE[ue(Yee = Ym)]
j= =1

+
j=1 K

(A4)

The last two terms are zero because u is independent of Y.
The first term in the right hand side is the definition of kri-
ging error covariance matrix. Finally, the second term
equals M - M = Vi because the components of u are indepen-
dent with unit variance. Therefore,

Ves = 2Vk (A5)
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