
XVIII International Conference on Water Resources 
CMWR 2010 

J. Carrera (Ed) 
CIMNE, Barcelona 2010 

 

COMPUTATIONALLY EFFICIENT INVERSION OF STEADY-STATE 
STOCHASTIC MOMENT EQUATIONS OF GROUNDWATER FLOW 

Francesca De Gaspari†, Monica Riva*, Andrés Alcolea††, and Alberto Guadagnini* 

* Dipartimento Ingegneria Idraulica, Ambientale, Infrastrutture Viarie, Rilevamento (D.I.I.A.R.) 
Politecnico di Milano, Piazza L. Da Vinci, 32, I-20133 Milano, Italy 

e-mail: monica.riva@polimi.it, alberto.guadagnini@polimi.it 

† Department of Geotechnical Engineering and Geosciences, Technical University of Catalonia 
Gran Capità S/N, 08034 Barcelona, Spain 

Institute of Environmental Assessment and Water Research (IDAEA-CSIC), c/LluisSolè i Sabaris, s/n, 
08028 Barcelona, Spain 

e-mail: francesca.de.gaspari@upc.edu 

†† TK Consult AG, Seefeldstrasse 287, CH-8008 Zürich, Switzerland 
e-mail: alcolea@tkconsult.ch 

Key words: Stochastic moment equations, geostatistical inverse modeling, aquifer 
characterization. 

1 INTRODUCTION 
The impact of various sources of uncertainty on predictions of groundwater flow is 

conveniently tackled by casting the governing equations in a stochastic framework. Different 
inverse stochastic approaches have been developed to condition hydrogeological models’ 
predictions not only on direct measurements of parameters but also on information on state 
variables. Here, we focus on the inversion of stochastic moment equations of groundwater 
flow, as originally proposed by Hernandez et al.1,2. In their approach, hydraulic conductivity 
is parameterized geostatistically based on measured values at discrete locations and unknown 
values at discrete pilot points. Prior estimates of pilot point values are obtained by generalized 
kriging. Posterior estimates at pilot points and (optionally) at measurement points are 
obtained by calibrating mean flow against measured values of head. The parameters are then 
projected onto a computational grid via kriging. Maximum likelihood calibration is employed 
to estimate not only hydraulic but also (optionally) unknown variogram parameters. The latter 
define the underlying geostatistical model. The approach yields covariance matrices for 
parameter estimation as well as head and flux prediction errors. The latter are obtained a 
posteriori by solving corresponding second-moment equations. Hernandez et al.1,2 
implemented their inverse approach on a synthetic scenario, involving a general nonuniform 
flow condition in a bounded heterogeneous two-dimensional domain. Recently, Hendricks 
Franssen et al.3 performed a comparative synthetic study assessing the relative performance of 
this moment equations-based inverse method and several types of Monte Carlo inverse 
methodologies. Results of that study showed that that observed differences between the 
performances of the tested methods were not very large. However, Monte Carlo inversion of 
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100 realizations needed considerably more CPU time than geostatistical inversion of moment 
equations did. Bianchi-Janetti et al.4 applied the inverse moment-equations method to 
characterize the log-transmissivity distribution at a small scale field test site located in 
Montalto Uffugo (Italy). In their field application, information on hydraulic head is provided 
through self-potential signals recorded by a few surface electrodes during a pumping test, 
while only one transmissivity measurement was available. 

Notwithstanding the theoretical and conceptual advantages of the method, the inversion of 
moment equations is still based on an optimization process which requires the numerical 
calculation of the derivatives of the objective function with respect to model parameters. 
These are in turn calculated from the derivatives of nodal heads (i.e., the sensitivity matrix). 
This limits its applicability to situations where the number of parameters, e.g., hydraulic 
conductivity values at pilot points, is not large because of the associated relevant 
computational cost. Here, we embed exact equations satisfied by the sensitivity matrix of the 
(ensemble) mean hydraulic head, up to its second-order of approximation, within the inverse 
modeling process. This renders the nonlinear inversion of stochastic moment equations 
feasible for a large number of unknown hydraulic parameters. We illustrate our algorithm and 
procedure with a synthetic example. 

2 POSITION OF THE PROBLEM AND COMPUTATIONAL DETAILS 
We consider steady-state flow of groundwater in a randomly heterogeneous flow domain. 

The flux vector q(x) and the hydraulic head h(x) obey the continuity equation and Darcy’s 
Law subject to given forcing terms. Optimum unbiased predictions of h(x) and q(x) can be 
rendered via their first ensemble (statistical) moments, 〈h(x)〉 and 〈q(x)〉. Guadagnini and 
Neuman5,6 showed how to solve the equations satisfied by the zero- and second-order 
components of mean hydraulic head by a Galerkin finite element scheme in a two-
dimensional rectangular domain, in the presence of deterministic forcing terms. Here, the 
order of approximation (zero- or second-) of a quantity is given in terms of the standard 
deviation, σY, of the natural logarithm of hydraulic conductivity, Y = ln K. The recursive finite 
element algorithm of Guadagnini and Neuman6 is valid to second order in σY. It assumes that 
one has at his/her disposal two functional parameters: a conditional unbiased estimate, 〈Y(x)〉, 
of the randomly varying Y field and the second conditional moment of associated estimation 
errors, CY (x, y). When conditioning is performed on the basis of existing measurements of Y 
at discrete points, 〈Y(x)〉 and CY (x, y) can be obtained (in principle) by means of geostatistical 
methods. We parameterize 〈Y(x)〉 as Hernandez et al.1,2 did and express it as the weighted sum 
of precisely or imprecisely known values at discrete (NM) measurement points and unknown 
values at discrete (Np) pilot points. Both sets of values are treated (the first optionally) as 
unknown parameters to be estimated by inversion. Estimates of 〈Y(x)〉 and CY(x, y) based on 
log conductivity measurements (if available) are treated as prior information in the manner of 
Carrera and Neuman7,8. The weights of the sum are evaluated through universal kriging 
considering the variance of measurement errors at actual data points (assumed to be 
uncorrelated) and the covariance of estimation errors at pilot points (set equal to the inverse 
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Fisher information matrix of the most recent iterate). A Maximum Likelihood (ML) estimate 
of 〈Y(x)〉 is obtained by minimizing the negative log-likelihood criterion 

2 2
2 2 ln ln ln ln ln 2h Y

Y h h hE Y YE z
hE YE

F F
NLL N N Nσ σ π

σ σ
= + + + + + +V V  

(1)

with respect to model parameters. Here, NY = NM + Np, Nh is the number of head 
measurements, Nz = NY + Nh, YV  and hV  are the prior error covariance matrices of Y and h , 
defined as 2

Y YE Yσ=C V , 2
h YE hσ=C V . Following the work of Carrera and Neuman7,8 we 

assume that the measurement errors of Y and h (a) lack correlation and (b) are multivariate 
Gaussian. It then follows that the matrix hV  is diagonal and YC is a matrix formed by the 
diagonal covariance matrix of Y measurements errors and the non-diagonal covariance matrix 
of Y estimation errors at pilot points. In (1), Fh and FY are the head residual criterion and the 
penalty parameter criterion, respectively 

[ ]( ) [ ]( )* 1 *
T

a a
h hF −= − −h h V h h ;       ( ) ( )* 1 *T

Y YF −= − −Y Y V Y Y  
(2)

where superscript T denotes transpose, *h  is the vector of head measurements, 〈h[a]〉 is a 
vector of a-order mean conditional hydraulic head values (a = 0, 2, depending on the order of 
approximation of 〈h〉) calculated at head measurement locations; *Y  is the vector of Y 
measurements and Y prior estimates at pilot point locations, 〈Y〉 is a vector of mean Y values 
evaluated during inversion (performed at order a) at Y measurement and pilot point locations. 

While Hernandez et al.1,2 minimize (1) by adopting the finite differences method to 
calculate numerically the model sensitivity matrix, we develop novel equations satisfied by 
the derivatives of the second-order mean head with respect to model parameters. A finite 
element algorithm to solve these equations has been implemented in a new code, named 
INME (INverse Moment Equations). It extends the earlier code by Guadagnini and Neuman6 
to (i) handle irregular domain shapes, rectangular and triangular elements, and general 
boundary conditions (Dirichlet, Neuman and Cauchy type), and (ii) perform the inversion of 
the flow moment equations including the evaluation of the exact sensitivity matrix. The 
derivative of the second-order approximation of the mean conditional head, 〈h[2]〉, with respect 
to the j-th hydraulic parameter H j

Y  (j = 1,…., NY) is given by 

[ ] ( ) ( )2 0 2

H H Hj j j

h h h

Y Y Y

∂ ∂ ∂
= +

∂ ∂ ∂
 

(3)

〈h(0)〉 and 〈h(2)〉 respectively being the zero- and second-order component of mean hydraulic 
heads. Details on the evaluation of the derivatives of 〈h(0)〉 and 〈h(2)〉 are presented by Riva et 
al.9. In essence, the equations satisfied by the derivatives included in (3) can be obtained on 
the basis of (i) the zero- and second- order equations for the mean hydraulic head, and (ii) the 
equations adopted to compute the kriging estimates (and associated covariance matrix) of Y. 
They only involve terms which are calculated during the forward solution of the equation 
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satisfied either by 〈h(0)〉 or 〈h(2)〉 as well as the kriging weights and posterior kriging estimates 
(and covariance matrix) of the Y field. 

3 ILLUSTRATIVE EXAMPLE 
We consider a rectangular domain of length 18 and width 8 (all quantities hereinafter are 

given in consistent units), which is discretized into Ne = 3600 square elements of uniform size 
δ = 0.2. Figure 1a depicts a sketch of the flow domain, with the type of boundary conditions 
used. A well is located in the center of the domain and pumps continuously at a constant unit 
rate. Using a sequential Gaussian simulator [GCOSIM3D10] we generate a single 
unconditional realization of Y with zero mean, exponential isotropic variogram with given sill, 

2
Yσ = 4.0, and integral scale, IY = 1.0. We use a standard finite element algorithm to obtain the 

corresponding distribution of heads. These constitute our reference fields of hydraulic 
conductivity and heads. We sample the reference head field at 36 measurement locations 
(depicted by cross in Figure 1a) and the Y field at 16 points (indicated by triangles in Figure 
1a). In our analysis we consider six different networks with 16, 32, 64, 103, 150 and 200 pilot 
points. Figure 1b reports the details on the number and location of pilot points for each of the 
scenarios investigated. 
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Figure 1: (a) Geometry of the test problem, location of the pumping well (●), Y ( ) and h (×) measurement 

points; (b) pilot point locations: Np = 16 ( ), Np = 32 (  and ), Np = 64 ( ,  and ), Np = 103 ( , ,  
and ), Np = 150 ( , , ,  and ), Np = 200 ( , , , ,  and �) 

We superimpose a white Gaussian measurement error with unit variance on both sets of 
measurements ( 2 2 1YE hEσ σ= = .0) and estimate Y at pilot points by prior ordinary kriging of the 
noisy Y "measurements". Figure 2a reports the perturbed values of Y, Yperturbed, versus their 
true counterparts, Ytrue, together with the associated percentage measurement errors. The 
corresponding depiction for hydraulic heads, h, showing perturbed values of h, hperturbed, 
versus their true counterparts, htrue, is reported in Figure 2b. The percentage measurement 
errors associated with hydraulic head increases from 10% (close to the left boundary) to more 
than 100% (in the proximity of the right boundary, where h is close to zero) with an average 
value of about 50%. The average percentage error associated with the conductivity 
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measurements is about 100%. These large uncertainties are not uncommon in practical 
situations where only the order of magnitude of hydraulic conductivity is often known, e.g., 
on the basis of interpretation of particle-size distributions, and hydraulic head information are 
affected by the accuracy of the instruments, operational errors and external factors (e.g., 
electrical interference and variations in atmospheric pressure). 
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Figure 2: (a) Yperturbed versus Ytrue at measurements Y locations; (b) hperturbed versus htrue at measurements h 

locations. Percentage measurement errors are also reported (grey lines) 

4 RESULTS AND DISCUSSION 
Here, we explore the benefit of basing the inversion of moment equations on the direct 

(and exact) calculation of the derivatives. We analyze the impact of a complete second-order 
solution by performing the inversion in two different ways: (i) approximating the mean 
hydraulic head in (2) by its zero-order component (a = 0; we denote this scenario as zero-
order inversion), and (ii) computing the complete second-order solution for the mean 
hydraulic head (a = 2 in (2); we denote this scenario as second-order inversion). For 
comparison purposes, we perform our calculations (i) with the procedure of Hernandez et 
al.1,2, who couple the solution of the flow problem with the public domain code PEST11, and 
(ii) with our code INME, which makes full use of the expressions satisfied by the derivatives 
of mean hydraulic heads with respect to the hydraulic parameters of the model. For 
illustration purposes, we assume that one has at his/her disposal a data-base allowing to infer 
reliable estimates of 2

Yσ  and IY (which we set equal to the reference values adopted during the 
generation procedure), and that 2 2/hE YEσ σ  is known. On this basis, minimizing (1) corresponds 
to the minimization of 

2

2
hE

h Y
YE

J F F
σ
σ

= +  
(4)

Figure 3 shows how J evaluated with INME and with the procedure of Hernandez et al.1,2 
converges as the number of iterations increases for zero- and second order inversion with Np = 
16 and Np =103. Similar results have been obtained for all the pilot points networks analyzed. 
The inversion perform with INME requires less iterations and reaches a lower minimum of J 
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than the one performed with the procedure of Hernandez et al.1,2. Table 1 lists the minimum 
values of J, Jmin, attained at the end of the inversion together with the CPU time (in hours) 
needed. All the numerical computations have been performed on a CILEA supercomputer, 
cluster Xeon - Exadron of 128 2-ways nodes with Intel Xeon 3.06GHz CPU. The zero-order 
inversion performed with INME requires less than one minute for all the cases (corresponding 
CPU times are not reported here). The difference in terms of CPU time requested by the two 
methodologies increases as Np increases, rendering the inverse solution of Moment Equations 
practically unfeasible for large values of Np without the direct evaluation of (3). The CPU 
time required by INME increases (approximately) linearly with Np, while it exhibits a 
quadratic dependence on Np when the procedure of Hernandez et al.1,2 is adopted. 
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Figure 3: Dependence of J on the number of iterations for zero- and second order inversions performed with 

INME (♦) and with the procedure of Hernandez et al.1,2 (◊) with (a) Np = 16 and Np = 103 
 
 Zero-order inversion Second-order inversion 

 INME Procedure of 
Hernandez et al.1,2 INME Procedure of 

Hernandez et al.1,2 
Np Jmin Jmin CPU time[h] Jmin CPU time[h] Jmin CPU time[h] 
16 50.6 52.0 2.6 52.9 10.1 54.4 8.5 
32 46.3 49.5 6.6 48.8 15.9 52.3 15.8 
64 42.9 46.1 15.8 45.1 20.7 49.6 36.5 
103 41.9 45.2 35.6 43.3 42.2 48.1 58.4 
150 40.1 44.2 88.6 41.8 46.2 47.4 129.4 
200 40.0 44.1 165.8 41.3 78.4 47.1 267.6 

 

Table 1: Minimum values of J, Jmin, and CPU time 
 

A global quantitative analysis about the quality of the reconstructed Y field is carried out 
by evaluating mean absolute and root-mean square error ( Ye  and YRMSE , respectively) of Y 

[ ]

1

1 ( ) ( )
eN ae e

Y i ref i
e i

e Y Y
N =

= −∑ x x ;      
[ ] 2
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RMSE Y Y
N =
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(5)



Francesca De Gaspari, Monica Riva, Andrés Alcolea and Alberto Guadagnini 

 7

Here, 
[ ]

( )
ae

iY x  (a = 0 or 2) is the mean Y field estimated during the a-order inversion at the 

Ne elements’ centroids, e
ix ; ( )e

ref iY x  are error-free reference values of Y, evaluated at e
ix . 

Figure 4 depicts the calculated Ye  (Figure 4a) and YRMSE  (Figure 4b) as a function of the 
number of pilot points and order of inversion. The results obtained with INME (continuous 
lines) are here contrasted with those computed approximating the sensitivity matrix by the 
incremental ratio calculated on the basis of PEST (dashed lines), according to Hernandez et 
al.1,2. It is clear that the use of the exact sensitivity matrix results in a more accurate 
reconstruction of Y field, especially when a second order inversion is performed. As expected, 

Ye  and RMSEY decrease as the number of pilot points increases. We note that they both 
display a steep rate of decrease when Np increases from 16 to 64. Further increments of Np 
only result in marginal additional reductions of Ye  and RMSEY. We note that Ye  and RMSEY 
are slightly smaller for the second- than for the zero-order inversion. 

1.26

1.28

1.30

1.32

1.34

1.36

1.38

1.40

0 50 100 150 200

1.60

1.62

1.64

1.66

1.68

1.70

1.72

1.74

1.76

0 50 100 150 200

Number of Pilot Points

Zero-order inversion 

Second-order inversion 

Zero-order inversion 

Second-order inversion 

(a) (b)

Number of Pilot Points

Zero-order inversion 

Second-order inversion 

Zero-order inversion 

Second-order inversion 

e Ye Y

RM
SE

Y
RM

SE
Y

 
Figure 4: (a) Mean absolute error, Ye , and (b) root-mean square error, RMSEY, of Y versus the number of pilot 

points calculated with zero- and second-order inversion 

5 CONCLUSIONS 
We embed the equations satisfied by the sensitivity matrix of the (ensemble) mean 

hydraulic head in a geostatistical inverse procedure to condition zero- and second-order 
approximations of stochastic moment equations of flow on information on hydraulic 
conductivity and hydraulic head. During inversion, we directly solve the system of equations 
satisfied by the derivatives of the (ensemble mean) hydraulic heads with respect to model 
parameters. An advantage of this methodology is that the system matrices are identical for all 
the parameters and coincide with those used to solve the state equations. Relying on this 
approach allows considerable improvement of the methodology originally proposed by 
Hernandez et al.1,2 not only in terms of accuracy of the solution, but also in terms of the CPU 
time required for the calculations. This renders the nonlinear inversion of stochastic moment 
equations feasible for a large number of unknown hydraulic parameters. 
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