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Introduction Test application

Geophysical surveys often provide exhaustive maps of secondary information that can guide the interpolation of a primary variable (hydraulic conductivity for The approach is illustrated with data from satellite images of Cyprus taken at various wavelengths (photos
example). However, most often the relation between the variables are modeled with a linear statistical relationship (often between the log of the variables). Here, we from the USGS Landsat project).
argue that these approaches are special cases of a broader approach in which the relation between the two variables should be modelled by a joint probability densit
gue PP P PP ya) Yy Yy
function. The images of the primary and the secondary variables are two satellite photos from the same area taken at
An advantage of considering the joint relation in this manner is that it allows to model situations in which the conditional probabilities are multimodal. In this different wavelengths. Each wavelength highlights different features of the land surface. However, there is
framework, we present a direct conditional co-simulation technique that allows creating collocated conditional simulations of the primary variable from a set of data a correlation between both photos, that can be expressed as a joint distribution. This joint distribution is
points of the primary variable, an exhaustive map of the secondary variable, a numerical description of the joint PDF between the two variables, and a model of known.
spatial correlation for the primary variable. Our goal is to obtain realisations that are as close as possible from the “real” primary variable.
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The proposed algorithm of PDF combination proceeds as follows: 150 ' - ‘$ ol TR v 80
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1.  Define a random path in the simulated image. 120 E gL 140 EILEL Vg ®
2.  Extract the discretized conditional PDF from the joint distribution (conditional to the secondary value v, at the | : ' , 1170
. . . g
simulated node), and rescale it to obtain P, 4(V,). 120 i 120
3. Compute the local mean (m,) and standard deviation (S,) by ordinary kriging. Cy
4.  Discretize the PDF of kriging G(mj,s,) and rescale it to obtain Py (vy). 100§ Aok L 1160
5. Combine_ Peond(v1) and Py;,(v,) to obtain the combined PQF Peompi(V1)- TWO comb_i_nation _apprqaches are possible: aoll el
a)  Multiply both PDFs: Py ni(V1)= Peona(V1) Pirig(V4)- This what we call probability conjunction (Tarantola 2005). L AR 1
b)  Use the tau model (Krishnan 2005 , see below). 60 Ik 5. 60 =
6. Draw avalue from P_,.,(v;) and attribute it to the simulated node. i T &
7. Add this node to the data set. 40 BT ofoA 40 "
8. Iterate until all nodes are simulated. [ ’ ., ‘ | ki
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The tau model T e 2 e
The tau model is more sophisticated than probability conjunction, as it goes beyond the hypothesis of data independence. This method allows combining partially | | Histogram of sampled values | _ Histogram of secondary variable
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redundant information. Redundancy is quantified by a factor t that must be calibrated using synthetic cases. 02|
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According to the tau model, the combined probability P(A) associated to the primary variable conditionally to secondary information P(B,) and P(B,) is given by: 0.06|
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Mean and standard deviation from kriging
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7, IS fixed to 1. 7; has to be defined in order to weight each contributing variable according to its interaction with the other variables. In the present case, z, only has to 140 e @
be defined. 2 00 120l ® s I
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If no t value is available, taking 7; = 1 assumes data independance. In the test application, as no synthetic proxy case was available, we used this assumption, even if g 100
the variables are not independent. Nevertheless, this leads to better estimates than other methods. > o
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Another method: the cloud transform ’
®
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The cloud transform algorithm (Bashore et al. 1994, Kolbjarnsen & Abrahamsen 2004) is based on a Sequential Gaussian Simulation associated to Normal-Score . o
transforms. This method is widely used in the petroleum industry. It proceeds as follows: 130 140 150 1680 170 180 & © s 9 © 100
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1. Compute the Normal-Score transform of the primary variable data using the local conditional PDFs. Secondary variable o s .
2. Adjust a variogram model on these transformed data.
3. Perform a conditional simulation using the variogram of (2) and the transformed data of (1). 0.2 - “Combined PDF (rescaled)
4. Perform the Inverse-Normal-Score transform using local conditional PDFs. 0.18 -  Conditonal PDF Geconied)
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Conclusion o
Assuming independence of both sources of information is clearly wrong as the kriging information is based on previously simulated points that 0.1 - :
already integrated information of the joint distribution. But we show here that even when the redundancy factor z is unknown, assuming 0.08 -
Independence (setting 7, =1) gives better results than traditional method that are based on Gaussian assumptions. i |
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Both method using PDF combination prove to be more efficient than the traditional cloud transform method. Simply multiplying both PDFs N
robability conjunction) gives satisfying results. But finally, the best results are given by the PDF combination using the tau model, even if the 00217 / NN
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Spatial cross-correlations are neglected at this stage of the work, but they could be integrated in the simulation algorithm.
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