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Introduction

A direct sequential cosimulation algorithm and its application in 

hydrogeophysics

Grégoire Mariethoz*, Philippe Renard*, Andres Alcolea*.

Geophysical surveys often provide exhaustive maps of secondary information that can guide the interpolation of a primary variable (hydraulic conductivity for

example). However, most often the relation between the variables are modeled with a linear statistical relationship (often between the log of the variables). Here, we

argue that these approaches are special cases of a broader approach in which the relation between the two variables should be modelled by a joint probability density

function.

An advantage of considering the joint relation in this manner is that it allows to model situations in which the conditional probabilities are multimodal. In this

framework, we present a direct conditional co-simulation technique that allows creating collocated conditional simulations of the primary variable from a set of data

points of the primary variable, an exhaustive map of the secondary variable, a numerical description of the joint PDF between the two variables, and a model of

spatial correlation for the primary variable.
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The proposed algorithm of PDF combination proceeds as follows:

1. Define a random path in the simulated image.

2. Extract the discretized conditional PDF from the joint distribution (conditional to the secondary value v2 at the

simulated node), and rescale it to obtain Pcond(v1).

3. Compute the local mean (m0) and standard deviation (s0) by ordinary kriging.

4. Discretize the PDF of kriging G(m0,s0) and rescale it to obtain Pkrig(v1).

5. Combine Pcond(v1) and Pkrig(v1) to obtain the combined PDF Pcombi(v1). Two combination approaches are possible:

a) Multiply both PDFs: Pcombi(v1)= Pcond(v1) Pkrig(v1). This what we call probability conjunction (Tarantola 2005).

b) Use the tau model (Krishnan 2005 , see below).

6. Draw a value from Pcombi(v1) and attribute it to the simulated node.

7. Add this node to the data set.

8. Iterate until all nodes are simulated.
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The tau model is more sophisticated than probability conjunction, as it goes beyond the hypothesis of data independence. This method allows combining partially

redundant information. Redundancy is quantified by a factor τ that must be calibrated using synthetic cases.

According to the tau model, the combined probability P(A) associated to the primary variable conditionally to secondary information P(B1) and P(B2) is given by:

τ1 is fixed to 1. τi has to be defined in order to weight each contributing variable according to its interaction with the other variables. In the present case, τ2 only has to

be defined.

If no τ value is available, taking τi = 1 assumes data independance. In the test application, as no synthetic proxy case was available, we used this assumption, even if

the variables are not independent. Nevertheless, this leads to better estimates than other methods.
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Proposed algorithm

Another method: the cloud transform

1. Compute the Normal-Score transform of the primary variable data using the local conditional PDFs.

2. Adjust a variogram model on these transformed data.

3. Perform a conditional simulation using the variogram of (2) and the transformed data of (1).

4. Perform the Inverse-Normal-Score transform using local conditional PDFs.

The tau model

The cloud transform algorithm (Bashore et al. 1994, Kolbjørnsen & Abrahamsen 2004) is based on a Sequential Gaussian Simulation associated to Normal-Score

transforms. This method is widely used in the petroleum industry. It proceeds as follows:

Mean square error per node: 914.38     Mean error: 8.58     Standard deviarion of errors: 29.00

The approach is illustrated with data from satellite images of Cyprus taken at various wavelengths (photos

from the USGS Landsat project).

The images of the primary and the secondary variables are two satellite photos from the same area taken at

different wavelengths. Each wavelength highlights different features of the land surface. However, there is

a correlation between both photos, that can be expressed as a joint distribution. This joint distribution is

known.

Our goal is to obtain realisations that are as close as possible from the “real” primary variable.

Test application
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Assuming independence of both sources of information is clearly wrong as the kriging information is based on previously simulated points that

already integrated information of the joint distribution. But we show here that even when the redundancy factor τ is unknown, assuming

independence (setting τ2 =1) gives better results than traditional method that are based on Gaussian assumptions.

Both method using PDF combination prove to be more efficient than the traditional cloud transform method. Simply multiplying both PDFs

(probability conjunction) gives satisfying results. But finally, the best results are given by the PDF combination using the tau model, even if the

redundancy factor is unknown.

Spatial cross-correlations are neglected at this stage of the work, but they could be integrated in the simulation algorithm.

Conclusion
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n Mean square error per node: 428.07     Mean error: 2.66     Standard deviation of errors: 20.52
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Mean square error per node: 386.96     Mean error: 1.92     Standard deviation of errors: 19.58     τ2 =1

with




